219 resultados para Diabetes experimental
Resumo:
Much work has been done on obtaining empirical stress-velocity relations and evaluating the temperature dependence and activation energy of plastic deformation /1, 2/. Another prevalent concept is that of the drag coefficient and its variation with degree of crystal imperfection /3/. Significant differences and discrepancies exist in the reported values /2, 4/. Although it is recognised that the yield point is caused by point interstitials and aggregates, little has been done on the evaluation of specific crystal-solute combinations and interaction parameters. Some of the first efforts, in this direction were performed by Wain and Cottrell /5/.
Resumo:
The effect of some experimental parameters, namely sample weight, particle size and its distribution, heating rate and flow rate of inert gas, on the fractional decomposition of calcium carbonate samples have been studied both experimentally and theoretical. The general conclusions obtained from theoretical analysis are corroborated qualitatively by the experimental data. The analysis indicates that the kinetic compensating effect may be partly due to the variations in experimental parameters for different experiments.
Resumo:
A strain gauge load cell with separate bridges for measurement of the pull and the bending moment in the plane containing the net neck load and pull was developed and fixed in the longitudinal member of an experimental cart. A cart fitted first with pneumatic wheels and then with steel-rimmed wooden wheels was tested on three terrains—tar road, mud road and grassy terrain. Pull vs time and moment vs time records were obtained in each test and analysed. It is found that the bullocks pull the cart rather discontinuously at the low velocities at which these carts normally operate. On the tar road and the grassy terrain, the mean static coefficient of friction is significantly higher for the cart with steelrimmed wooden wheels. The dynamic frictional resistance of the terrain for the cart with steel-rimmed wooden wheels is lower than for the cart with pneumatic wheels so long as the wheels do not dig or sink into the terrain. The fluctuation in the neck load is lower in the cart fitted with pneumatic wheels. Also, the ground-induced low-amplitude high-frequency vibratory load content in the neck load is lower in the cart with pneumatic wheels.
Resumo:
Superconducting and magnetically long-range ordered states were believed to be mutually exclusive phenomena. The discovery of rare-earth compounds in recent years, which exhibit both superconductivity and magnetic ordering (ferromagnetic, antiferromagnetic or sinusoidal), has led to considerable theoretical and experimental work on such systems. In the present article, we give a review of various theoretical models and important experimental results. In the theoretical sections, we start with the Abrikosov-Gorkov pair breaking theory for dilute alloys and discuss its improvement in the work of Müller-Hartmann and Zittartz. Then, in the context of magnetic superconductors, various microscopic theories that have been advanced are presented. These predict re-entrant behaviour in some systems (ferromagnetic superconductors) and coexistence regions in others (particularly antiferromagnetic superconductors). Following this, phenomenological generalized Ginzburg-Landau theories for two kinds of orders (superconducting and magnetic) are presented. A section dealing with renormalization group analysis of phase diagrams in magnetic superconductors is given. In experimental sections, the properties of each rare-earth compounds (ternary as well as some tetranery) are reviewed. These involve susceptibility, heat capacity, resistivity, upper critical field, neutron scattering and magnetic resonance measurements. The anomalous behaviour of the upper critical field of antiferromagnetic superconductors near the Néel temperature is discussed both in theory sections and experimental section for various systems.
Resumo:
The heat capacity of a substance is related to the structure and constitution of the material and its measurement is a standard technique of physical investigation. In this review, the classical methods are first analyzed briefly and their recent extensions are summarized. The merits and demerits of these methods are pointed out. The newer techniques such as the a.c. method, the relaxation method, the pulse methods, the laser flash calorimetry and other methods developed to extend the heat capacity measurements to newer classes of materials and to extreme conditions of sample geometry, pressure and temperature are comprehensively reviewed. Examples of recent work and details of the experimental systems are provided for each method. The introduction of automation in control systems for the monitoring of the experiments and for data processing is also discussed. Two hundred and eight references and 18 figures are used to illustrate the various techniques.
Resumo:
We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.
Resumo:
The present study is to investigate the interaction of strong shock heated oxygen on the surface of SiO2 thin film. The thermally excited oxygen undergoes a three-body recombination reaction on the surface of silicon dioxide film. The different oxidation states of silicon species on the surface of the shock-exposed SiO2 film are discussed based on X-ray Photoelectron Spectroscopy (XPS) results. The surface morphology of the shock wave induced damage at the cross section of SiO2 film and structure modification of these materials are analyzed using scanning electron microscopy and ion microscopy. Whether the surface reaction of oxygen on SiO2 film is catalytic or non-catalytic is discussed in this paper.
Resumo:
Interaction of shock heated test gas in the free piston driven shock tube with bulk and thin film of cubic zirconium dioxide (ZrO2) prepared by combustion method is investigated. The test samples before and after exposure to the shock wave are analyzed by X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope (SEM). The study shows transformation of metastable cubic ZrO2 to stable monoclinic ZrO2 phase after interacting with shock heated oxygen gas due to the heterogeneous catalytic recombination surface reaction.
Resumo:
Numerical and experimental studies of a supersonic jet (Helium) inclined at 45 degrees to a oncoming Mach 2 flow have been carried out. The numerical study has been used to arrive at a geometry that could reduce an oncoming Mach 5.75 flow to Mach 2 flow and in determining the jet parameters. Experiments are carried out in the IISc. hypersonic shock tunnel HST2 at similar conditions obtained from numerical studies. Flow visualization studies carried out using Schlieren technique clearly show the presence of the bow shock in front of the jet exposed to supersonic cross flow. The jet Mach number is experimentally found to be approximate to 3. Visual observations show that the jet has penetrated up to 60% of the total height of the chamber.
Resumo:
An experimental study is presented to show the effect of the cowl location and shape on the shock interaction phenomena in the inlet region for a 2D, planar scramjet inlet model. Investigations include schlieren visualization around the cowl region and heat transfer rate measurement inside the inlet chamber.Both regular and Mach reflections are observed when the forebody ramp shock reflects from the cowl plate. Mach stem heights of 3.3 mm and 4.1 mm are measured in 18.5 mm and 22.7 mm high inlet chambers respecively. Increased heat transfer rate is measured at the same location of chamber for cowls of longer lenghs is indicating additional mass flow recovery by the inlet.
Resumo:
Forward facing circular nose cavity of 6 mm diameter in the nose portion of a generic missile shaped bodies is proposed to reduce the stagnation zone heat transfer. About 25% reduction in stagnation zone heat transfer is measured using platinum thin film sensors at Mach 8 in the IISc hypersonic shock tunnel. The presence of nose cavity does not alter the fundamental aerodynamic coefficients of the slender body. The experimental results along with the numerically predicted results is also discussed in this paper.
Resumo:
The objective of this paper is to discuss some hardware and software features of an experimental network of 8080 and 8085 microcomputers named Micronet. The interprocessor communication in the ring network is established using ring interfaces consisting of universal synchronous-asynchronous receivers-transmitters (USARTs). Another aspect considered is the interfacing of an 8080 microcomputer to a PDP-11/35 minicomputer and the development of the software for the microcomputer-minicomputer link which has been established over a serial line using the USART interface of the microcomputer and the DZ11 module of the minicomputer. This is useful in developing a host-satellite configuration of microcomputers and the minicomputer.
Resumo:
Among different methods, the transmission-line or the impedance tube method has been most popular for the experimental evaluation of the acoustical impedance of any termination. The current state of method involves extrapolation of the measured data to the reflecting surface or exact locations of the pressure maxima, both of which are known to be rather tricky. The present paper discusses a method which makes use of the positions of the pressure minima and the values of the standing-wave ratio at these points. Lippert's concept of enveloping curves has been extended. The use of Smith or Beranek charts, with their inherent inaccuracy, has been altogether avoided. The existing formulas for the impedance have been corrected. Incidentally, certain other errors in the current literature have also been brought to light.Subject Classification: 85.20.
Resumo:
The possible nonplanar distortions of the amide group in formamide, acetamide, N-methylacetamide, and N-ethylacetamide have been examined using CNDO/2 and INDO methods. The predictions from these methods are compared with the results obtained from X-ray and neutron diffraction studies on crystals of small open peptides, cyclic peptides, and amides. It is shown that the INDO results are in good agreement with observations, and that the dihedral angles N and defining the nonplanarity of the amide unit are correlated approximately by the relation N = -2, while C is small and uncorrelated with . The present study indicates that the nonplanar distortions at the nitrogen atom of the peptide unit may have to be taken into consideration, in addition to the variation in the dihedral angles (,), in working out polypeptide and protein structures.
Resumo:
The paper deals with an exact analysis of standing waves in an impedance tube with mean flow. A method is offered for the experimental evaluation of the various wave parameters. Navier–Stokes equations have been solved for evaluating the volume velocity taking into account mean flow, viscosity, etc. The engine exhaust system has been characterized as an acoustic source with an acoustic pressure and internal impedance. A method is suggested for the evaluation of these hypothetical parameters using the exhaust pipe as an impedance tube.Subject Classification: [43]85.20; [43]20.40.