28 resultados para Depth, logging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, reduced level of rock at Bangalore, India is arrived from the 652 boreholes data in the area covering 220 sq.km. In the context of prediction of reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth, ordinary kriging and Support Vector Machine (SVM) models have been developed. In ordinary kriging, the knowledge of the semivariogram of the reduced level of rock from 652 points in Bangalore is used to predict the reduced level of rock at any point in the subsurface of Bangalore, where field measurements are not available. A cross validation (Q1 and Q2) analysis is also done for the developed ordinary kriging model. The SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing e-insensitive loss function has been used to predict the reduced level of rock from a large set of data. A comparison between ordinary kriging and SVM model demonstrates that the SVM is superior to ordinary kriging in predicting rock depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scattering of water waves by a sphere in a two-layer fluid, where the upper layer has an ice-cover modelled as an elastic plate of very small thickness, while the lower one has a rigid horizontal bottom surface, is investigated within the framework of linearized water wave theory. The effects of surface tension at the surface of separation is neglected. There exist two modes of time-harmonic waves - the one with lower wave number propagating along the ice-cover and the one with higher wave number along the interface. Method of multipole expansions is used to find the particular solution for the problem of wave scattering by a submerged sphere placed in either of the layers. The exciting forces for vertical and horizontal directions are derived and plotted against different values of the wave number for different submersion depths of the sphere and flexural rigidity of the ice-cover. When the flexural rigidity and the density of the ice-cover are taken to be zero, the numerical results for the exciting forces for the problem with free surface are recovered as particular cases. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring and visualizing specimens at a large penetration depth is a challenge. At depths of hundreds of microns, several physical effects (such as, scattering, PSF distortion and noise) deteriorate the image quality and prohibit a detailed study of key biological phenomena. In this study, we use a Bessel-like beam in-conjugation with an orthogonal detection system to achieve depth imaging. A Bessel-like penetrating diffractionless beam is generated by engineering the back-aperture of the excitation objective. The proposed excitation scheme allows continuous scanning by simply translating the detection PSF. This type of imaging system is beneficial for obtaining depth information from any desired specimen layer, including nano-particle tracking in thick tissue. As demonstrated by imaging the fluorescent polymer-tagged-CaCO3 particles and yeast cells in a tissue-like gel-matrix, the system offers a penetration depth that extends up to 650 mu m. This achievement will advance the field of fluorescence imaging and deep nano-particle tracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic site classifications are used to represent site effects for estimating hazard parameters (response spectral ordinates) at the soil surface. Seismic site classifications have generally been carried out using average shear wave velocity and/or standard penetration test n-values of top 30-m soil layers, according to the recommendations of the National Earthquake Hazards Reduction Program (NEHRP) or the International Building Code (IBC). The site classification system in the NEHRP and the IBC is based on the studies carried out in the United States where soil layers extend up to several hundred meters before reaching any distinct soil-bedrock interface and may not be directly applicable to other regions, especially in regions having shallow geological deposits. This paper investigates the influence of rock depth on site classes based on the recommendations of the NEHRP and the IBC. For this study, soil sites having a wide range of average shear wave velocities (or standard penetration test n-values) have been collected from different parts of Australia, China, and India. Shear wave velocities of rock layers underneath soil layers have also been collected at depths from a few meters to 180 m. It is shown that a site classification system based on the top 30-m soil layers often represents stiffer site classes for soil sites having shallow rock depths (rock depths less than 25 m from the soil surface). A new site classification system based on average soil thickness up to engineering bedrock has been proposed herein, which is considered more representative for soil sites in shallow bedrock regions. It has been observed that response spectral ordinates, amplification factors, and site periods estimated using one-dimensional shear wave analysis considering the depth of engineering bedrock are different from those obtained considering top 30-m soil layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residue depth accurately measures burial and parameterizes local protein environment. Depth is the distance of any atom/residue to the closest bulk water. We consider the non-bulk waters to occupy cavities, whose volumes are determined using a Voronoi procedure. Our estimation of cavity sizes is statistically superior to estimates made by CASTp and VOIDOO, and on par with McVol over a data set of 40 cavities. Our calculated cavity volumes correlated best with the experimentally determined destabilization of 34 mutants from five proteins. Some of the cavities identified are capable of binding small molecule ligands. In this study, we have enhanced our depth-based predictions of binding sites by including evolutionary information. We have demonstrated that on a database (LigASite) of similar to 200 proteins, we perform on par with ConCavity and better than MetaPocket 2.0. Our predictions, while less sensitive, are more specific and precise. Finally, we use depth (and other features) to predict pK(a)s of GLU, ASP, LYS and HIS residues. Our results produce an average error of just <1 pH unit over 60 predictions. Our simple empirical method is statistically on par with two and superior to three other methods while inferior to only one. The DEPTH server (http://mspc.bii.a-star.edu.sg/depth/) is an ideal tool for rapid yet accurate structural analyses of protein structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of the present work is to analyze the influence of shoulder diameter and plunge depth on the formability of friction stir welded sheets. The base material used for welding and forming was AA6061-T6. Formability evaluation was performed through limiting dome height tests. The forming limit curve, FLC (only in the stretching region), thickness distribution, and strain hardening exponent of the weld region were monitored during formability studies. It is found from the work that the forming limit of friction stir welded sheets is better than unwelded sheets. In general, with an increase in shoulder diameter and plunge depth, the forming limit is found to improve considerably. With a decrease in thickness gradient severity and an increase in strain hardening exponent (n) of the weld region, the forming limit is found to increase. The increase in n value of the weld region is believed to occur because of the reduction in dislocation density. The maximum thickness difference is higher in the retreating side, rather than in the advancing side, of the weld. This is due to the differential straining and hardness levels attained by both sides during friction stir welding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 906, 1356, and 1806, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a depth-guided photometric 3D reconstruction method that works solely with a depth camera like the Kinect. Existing methods that fuse depth with normal estimates use an external RGB camera to obtain photometric information and treat the depth camera as a black box that provides a low quality depth estimate. Our contribution to such methods are two fold. Firstly, instead of using an extra RGB camera, we use the infra-red (IR) camera of the depth camera system itself to directly obtain high resolution photometric information. We believe that ours is the first method to use an IR depth camera system in this manner. Secondly, photometric methods applied to complex objects result in numerous holes in the reconstructed surface due to shadows and self-occlusions. To mitigate this problem, we develop a simple and effective multiview reconstruction approach that fuses depth and normal information from multiple viewpoints to build a complete, consistent and accurate 3D surface representation. We demonstrate the efficacy of our method to generate high quality 3D surface reconstructions for some complex 3D figurines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing availability of wearable cameras, research on first-person view videos (egocentric videos) has received much attention recently. While some effort has been devoted to collecting various egocentric video datasets, there has not been a focused effort in assembling one that could capture the diversity and complexity of activities related to life-logging, which is expected to be an important application for egocentric videos. In this work, we first conduct a comprehensive survey of existing egocentric video datasets. We observe that existing datasets do not emphasize activities relevant to the life-logging scenario. We build an egocentric video dataset dubbed LENA (Life-logging EgoceNtric Activities) (http://people.sutd.edu.sg/similar to 1000892/dataset) which includes egocentric videos of 13 fine-grained activity categories, recorded under diverse situations and environments using the Google Glass. Activities in LENA can also be grouped into 5 top-level categories to meet various needs and multiple demands for activities analysis research. We evaluate state-of-the-art activity recognition using LENA in detail and also analyze the performance of popular descriptors in egocentric activity recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show here a 2(Omega(root d.log N)) size lower bound for homogeneous depth four arithmetic formulas. That is, we give an explicit family of polynomials of degree d on N variables (with N = d(3) in our case) with 0, 1-coefficients such that for any representation of a polynomial f in this family of the form f = Sigma(i) Pi(j) Q(ij), where the Q(ij)'s are homogeneous polynomials (recall that a polynomial is said to be homogeneous if all its monomials have the same degree), it must hold that Sigma(i,j) (Number of monomials of Q(ij)) >= 2(Omega(root d.log N)). The above mentioned family, which we refer to as the Nisan-Wigderson design-based family of polynomials, is in the complexity class VNP. Our work builds on the recent lower bound results 1], 2], 3], 4], 5] and yields an improved quantitative bound as compared to the quasi-polynomial lower bound of 6] and the N-Omega(log log (N)) lower bound in the independent work of 7].