22 resultados para Denzel, XXX,


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distinctions between isobaric residues have been a major challenge in mass spectrometric peptide sequencing. Here, we propose a methodology for distinction among isobaric leucine, isoleucine, and hydroxyproline, a commonly found post-translationally modified amino acid with a nominal mass of 113 Da, through a combined electron transfer dissociation-collision-induced dissociation approach. While the absence of c and z(center dot) ions, corresponding to the Yyy-Xxx (Xxx = Leu, Ile, or Hyp) segment, is indicative of the presence of hydroxyproline, loss of isopropyl (Delta m = 43 Da) or ethyl radicals (Delta m = 29 Da), through collisional activation of z(center dot) radical ions, are characteristic of leucine or isoleucine, respectively. Radical migration processes permit distinctions even in cases where the specific e ions, corresponding to the Yyy-Leu or -Ile segments, are absent or of low intensity. This tandem mass spectrometric (MSn) method has been successfully implemented in a liquid chromatography MSn platform to determine the identity of 23 different isobaric residues from a mixture of five different peptides. The approach is convenient for distinction of isobaric residues from any crude peptide mixture, typically encountered in natural peptide libraries or proteomic analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Aib-(D)Ala dipeptide segment has a tendency to form both type-I'/III' and type-I/III beta-turns. The occurrence of prime turns facilitates the formation of beta-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-OMe (1) has been previously shown to form a beta-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7), and Boc-Aib-Xxx-NHMe (4, 8), where Xxx = (D)Ala, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7), and Boc-Aib-Aib-NHMe (8) helical conformations have been established by NMR studies in both hydrogen bonding (CD(3)OH) and non-hydrogen bonding (CDCl(3)) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl(3) and beta-hairpin conformations in CD(3)OH. The beta-turn conformations (type-I'/III) stabilized by intramolecular 4 -> 1 hydrogen bonds are observed for the peptide Boc-Aib-(D)Ala-NHMe (4) and Boc-Aib-Aib-NIiMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 3(10)-helical conformation stabilized by three 4 -> 1 hydrogen bonds. The peptide Boc-Val-Aib-(D)Ala-Leu-NHMe (3) adopts a novel et-turn conformation, stabilized by three intramolecular hydrogen bonds (two 4 -> 1 and one 5 -> 1). The Aib-L(D)Ala segment adopts a type-I' beta-turn conformation. The observation of an NOE between Val (1) NH <-> HNCH(3) (5) in CD(3)OH suggests, that the solid state conformation is maintained in methanol solutions. (C) 2011 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 96: 744-756, 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of incorporation of a centrally positioned Ac(6)c-Xxx segment where Xxx = (L)Val/(D)Val into a host oligopeptide composed of L-amino acid residues has been investigated. Studies of four designed octapeptides Boc-Leu-Phe-Val-Ac(6)c-Xxx-Leu-Phe-Val-OMe (Xxx = (D)Val 1, (L)Val 2) Boc-Leu-Val-Val-Ac(6)c-Xxx-Leu-Val-Val-OMe (Xxx = (D)Val 3, (L)Val 4) are reported. Diagnostic nuclear Overhouse effects characteristic of hairpin conformations are observed for Xxx = (D)Val peptides (1 and 3) while continuous helical conformation characterized by sequential NiH <-> Ni+1H NOEs are favored for Xxx = (L)Val peptides (2 and 4) in methanol solutions. Temperature co-efficient of NH chemical shifts are in agreement with distinctly different conformational preferences upon changing the configuration of the residue at position 5. Crystal structures of peptides 2 and 4 (Xxx = (L)Val) establish helical conformations in the solid state, in agreement with the structures deduced from NMR data. The results support the design principle that centrally positioned type I beta-turns may be used to nucleate helices in short peptides, while type I' beta-turns can facilitate folding into beta-hairpins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of gem-dialkyl substituents on the backbone conformations of beta-amino acid residues in peptides has been investigated by using four model peptides: Boc-Xxx-beta 2,2Ac6c(1-aminomethylcyclohexanecarboxylic acid)-NHMe (Xxx=Leu (1), Phe (2); Boc=tert-butyloxycarbonyl) and Boc-Xxx-beta 3,3Ac6c(1-aminocyclohexaneacetic acid)-NHMe (Xxx=Leu (3), Phe (4)). Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed conformations about flanking single bonds. The crystal structure of Boc-Leu-beta 2,2Ac6c-NHMe (1) established a C11 hydrogen-bonded turn in the a beta-hybrid sequence. The observed torsion angles (a(similar to-60 degrees, similar to-30 degrees), beta(similar to-90 degrees, similar to 60 degrees, similar to-90 degrees)) corresponded to a C11 helical turn, which was a backbone-expanded analogue of the type III beta turn in aa sequences. The crystal structure of the peptide Boc-Phe-beta 3,3Ac6c-NHMe (4) established a C11 hydrogen-bonded turn with distinctly different backbone torsion angles (a(similar to-60 degrees, similar to 120 degrees), beta(similar to 60 degrees, ?60 degrees, similar to-60 degrees)), which corresponded to a backbone-expanded analogue of the type II beta turn observed in aa sequences. In peptide 4, the two molecules in the asymmetric unit adopted backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopted an unfavorable backbone conformation, with the energetic penalty being offset by a favorable aromatic interaction between proximal molecules in the crystal. NMR spectroscopy studies provided evidence for the maintenance of folded structures in solution in these a beta-hybrid sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structures of several designed peptide hairpins have been determined in order to establish features of molecular conformations and modes of aggregation in the crystals. Hairpin formation has been induced using a centrally positioned (D)Pro-Xxx segment (Xxx = (L)Pro, Aib, Ac(6)c, Ala; Aib = alpha-aminoisobutyric acid; Ac(6)c = 1-aminocyclohexane-1-carboxylic acid). Structures of the peptides Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (1), Boc-Leu-Tyr-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (2, polymorphic forms labeled as 2a and 2b), Boc-Leu-Val-Val-(D)Pro-(L)Pro-Leu-Val-Val-OMe (3), Boc-Leu-Phe-Val-(D)Pro-Aib-Leu-Phe-Val-OMe (4, polymorphic forms labeled as 4a and 4b), Boc-Leu-Phe-Val-(D)Pro-Ac(6)c-Leu-Phe-Val-OMe (5) and Boc-Leu-Phe-Val-(D)Pro-Ala-Leu-Phe-Val-OMe (6) are described. All the octapeptides adopt type II' beta-turn nucleated hairpins, stabilized by three or four cross-strand intramolecular hydrogen bonds. The angle of twist between the two antiparallel strands lies in the range of -9.8 degrees to -26.7 degrees. A detailed analysis of packing motifs in peptide hairpin crystals is presented, revealing three broad modes of association: parallel packing, antiparallel packing and orthogonal packing. An attempt to correlate aggregation modes in solution with observed packing motifs in crystals has been made by indexing of crystal faces in the case of three of the peptide hairpins. The observed modes of hairpin aggregation may be of relevance in modeling multiple modes of association, which may provide insights into the structure of insoluble polypeptide aggregates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conformational diversity or shapeshifting in cyclic peptide natural products can, in principle, confer a single molecular entity with the property of binding to multiple receptors. Conformational equilibria have been probed in the contryphans, which are peptides derived from Conus venom possessing a 23-membered cyclic disulfide moiety. The natural sequences derived from Conus inscriptus, GCV(D)LYPWC* (In936) and Conus loroisii, GCP(D)WDPWC* (Lo959) differ in the number of proline residues within the macrocyclic ring. Structural characterisation of distinct conformational states arising from cis-trans equilibria about Xxx-Pro bonds is reported. Isomerisation about the C2-P3 bond is observed in the case of Lo959 and about the Y5-P6 bond in In936. Evidence is presented for as many as four distinct species in the case of the synthetic analogue V3P In936. The Tyr-Pro-Trp segment in In936 is characterised by distinct sidechain orientations as a consequence of aromatic/proline interactions as evidenced by specific sidechain-sidechain nuclear Overhauser effects and ring current shifted proton chemical shifts. Molecular dynamics simulations suggest that Tyr5 and Trp7 sidechain conformations are correlated and depend on the geometry of the Xxx-Pro bond. Thermodynamic parameters are derived for the cis trans equilibrium for In936. Studies on synthetic analogues provide insights into the role of sequence effects in modulating isomerisation about Xxx-Pro bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonprotein amino acids are being extensively used in the design of synthetic peptides to create new structure mimics. In this study we report the effect of methylene group insertions in a heptapeptide Boc-Ala(1)-Leu(2)-Aib(3)-Xxx(4)-Ala(5)-Leu(6)-Aib(7)-OMe which nicely folds into a mixed 3(10)-/-helical structure when Xxx= Ala. Analogs of this peptide have been made and studied by replacing central Xxx(4) residue with Glycine (-residue), -Alanine (-la), -aminobutyric acid (Gaba), and epsilon-aminocaproic acid (epsilon-Aca). NMR and circular dichroism were used to study the solution structure of these peptides. Crystals of the peptides containing alanine, -la, and Gaba reveal that increasing the number of central methylene (-CH2-) groups introduces local perturbations even as the helical structure is retained. (c) 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 720-732, 2015.