22 resultados para Deficit irrigation
Resumo:
Sixteen irrigation subsystems of the Mahi Bajaj Sagar Project, Rajasthan, India, are evaluated and selection of the most suitable/best is made using data envelopment analysis (DEA) in both deterministic and fuzzy environments. Seven performance-related indicators, namely, land development works (LDW), timely supply of inputs (TSI), conjunctive use of water resources (CUW), participation of farmers (PF), environmental conservation (EC), economic impact (EI) and crop productivity (CPR) are considered. Of the seven, LDW, TSI, CUW, PF and EC are considered inputs, whereas CPR and EI are considered outputs for DEA modelling purposes. Spearman rank correlation coefficient values are also computed for various scenarios. It is concluded that DEA in both deterministic and fuzzy environments is useful for the present problem. However, the outcome of fuzzy DEA may be explored for further analysis due to its simple, effective data and discrimination handling procedure. It is inferred that the present study can be explored for similar situations with suitable modifications.
Resumo:
This article presents the results of a study using satellite remote sensing techniques to evaluate the current status of canal system performance in terms of the spatial and temporal mismatch between water requirements and water releases within the command area The Rajolibanda Diversion Scheme(RDS)is the only operational major irrigation project in the drought prone district of Mahaboobnagar in Andra Pradesh. It is an inter-state project between Karnataka and Andra Pradesh which comprises of an anicut constructed in Karnataka in 1995 across river Thungabhdra and a 143 km long left bank main canel. The initial 42.6 km of the canel lies in Karnataka consisting of 12 distributaries and servers and serves an localised ayacut of 2739ha. In Andra Pradesh, the latter stretch of the main canal consists of distributaries 12A to 40, is localised to serve an ayacut of 35,410 ha.of which 14,215 ha during kharif season,19,332 ha, during rabi season and 1,863 ha.of perennial crops
Resumo:
An integratedm odel is developed,b asedo n seasonailn puts of reservoiri nflow and rainfall in the irrigated area, to determine the optimal reservoir release policies and irrigation allocationst o multiple crops.T he model is conceptuallym ade up of two modules. Module 1 is an intraseasonal allocation model to maximize the sum of relative yieldso f all crops,f or a givens tateo f the systemu, singl inear programming(L P). The module takes into account reservoir storage continuity, soil moisture balance, and crop root growthw ith time. Module 2 is a seasonaal llocationm odel to derive the steadys tate reservoiro peratingp olicyu sings tochastidc ynamicp rogramming(S DP). Reservoir storage, seasonal inflow, and seasonal rainfall are the state variables in the SDP. The objective in SDP is to maximize the expected sum of relative yields of all crops in a year.The resultso f module 1 and the transitionp robabilitieso f seasonailn flow and rainfall form the input for module 2. The use of seasonailn puts coupledw ith the LP-SDP solution strategy in the present formulation facilitates in relaxing the limitations of an earlier study,w hile affectinga dditionali mprovementsT. he model is applied to an existing reservoir in Karnataka State, India.
Resumo:
Multiobjective fuzzy methodology is applied to a case study of Khadakwasla complex irrigation project located near Pune city of Maharashtra State, India. Three objectives, namely, maximization of net benefits, crop production and labour employment are considered. Effect of reuse of wastewater on the planning scenario is also studied. Three membership functions, namely, nonlinear, hyperbolic and exponential are analyzed for multiobjective fuzzy optimization. In the present study, objective functions are considered as fuzzy in nature whereas inflows are considered as dependable. It is concluded that exponential and hyperbolic membership functions provided similar cropping pattern for most of the situations whereas nonlinear membership functions provided different cropping pattern. However, in all the three cases, irrigation intensities are more than the existing irrigation intensity.
Resumo:
This paper presents an approach to model the expected impacts of climate change on irrigation water demand in a reservoir command area. A statistical downscaling model and an evapotranspiration model are used with a general circulation model (GCM) output to predict the anticipated change in the monthly irrigation water requirement of a crop. Specifically, we quantify the likely changes in irrigation water demands at a location in the command area, as a response to the projected changes in precipitation and evapotranspiration at that location. Statistical downscaling with a canonical correlation analysis is carried out to develop the future scenarios of meteorological variables (rainfall, relative humidity (RH), wind speed (U-2), radiation, maximum (Tmax) and minimum (Tmin) temperatures) starting with simulations provided by a GCM for a specified emission scenario. The medium resolution Model for Interdisciplinary Research on Climate GCM is used with the A1B scenario, to assess the likely changes in irrigation demands for paddy, sugarcane, permanent garden and semidry crops over the command area of Bhadra reservoir, India. Results from the downscaling model suggest that the monthly rainfall is likely to increase in the reservoir command area. RH, Tmax and Tmin are also projected to increase with small changes in U-2. Consequently, the reference evapotranspiration, modeled by the Penman-Monteith equation, is predicted to increase. The irrigation requirements are assessed on monthly scale at nine selected locations encompassing the Bhadra reservoir command area. The irrigation requirements are projected to increase, in most cases, suggesting that the effect of projected increase in rainfall on the irrigation demands is offset by the effect due to projected increase/change in other meteorological variables (viz., Tmax and Tmin, solar radiation, RH and U-2). The irrigation demand assessment study carried out at a river basin will be useful for future irrigation management systems. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Drastic groundwater resource depletion due to excessive extraction for irrigation is a major concern in many parts of India. In this study, an attempt was made to simulate the groundwater scenario of the catchment using ArcSWAT. Due to the restriction on the maximum initial storage, the deep aquifer component in ArcSWAT was found to be insufficient to represent the excessive groundwater depletion scenario. Hence, a separate water balance model was used for simulating the deep aquifer water table. This approach is demonstrated through a case study for the Malaprabha catchment in India. Multi-site rainfall data was used to represent the spatial variation in the catchment climatology. Model parameters were calibrated using observed monthly stream flow data. Groundwater table simulation was validated using the qualitative information available from the field. The stream flow was found to be well simulated in the model. The simulated groundwater table fluctuation is also matching reasonably well with the field observations. From the model simulations, deep aquifer water table fluctuation was found very severe in the semi-arid lower parts of the catchment, with some areas showing around 60m depletion over a period of eight years. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
A short-term real-time operation model with fuzzy state variables is developed for irrigation of multiple crops based on earlier work on long-term steady-state policy. The features of the model that distinguish it from the earlier work are (1) apart from inclusion of fuzziness in reservoir storage and in soil moisture of crops, spatial variations in rainfall and soil moisture of crops are included in the real-time operation model by considering gridded command area with a grid size of 0.5 degrees latitude by 0.5 degrees longitude; (2) the water allocation model and soil moisture balance equations are integrated with the real-time operation model with consideration of ponding water depth for Paddy crop; the model solution specifies reservoir releases for irrigation in a 10-day time period and allocations among the crops on a daily basis at each grid by maintaining soil moisture balance at the end of the day; and (3) the release policy is developed using forecasted daily rainfall data of each grid and is implemented for the current time period using actual 10-day inflow and actual daily rainfall of each grid. The real-time operation model is applied to Bhadra Reservoir in Karnataka, India. The results obtained using the real-time operation model are compared with those of the standard operating policy model. Inclusion of fuzziness in reservoir storage and soil moisture of crops captures hydrologic uncertainties in real time. Considerations of irrigation decisions on a daily basis and the gridded command area result in variations in allocating water to the crops, variations in actual crop evapotranspiration, and variations in soil moisture of the crops on a daily basis for each grid of the command area. (C) 2015 American Society of Civil Engineers.