40 resultados para Decimal numbers and fractional numbers


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Illegal harvest rates of wildlife populations are often unknown or difficult to estimate from field data due to under-reporting or incomplete detection of carcasses. This is especially true for elephants that are killed for ivory or in conflicts with people. We describe a method to infer harvest rates from coarse field data of three population parameters, namely, adult female to male ratio, male old-adult to young-adult ratio, and proportion of adult males in the population using Jensen's (2000) 2-sex, density-dependent Leslie matrix model. The specific combination of male and female harvest rates and numbers can be determined from the history of harvest and estimate of population size. We applied this technique to two populations of elephants for which data on age structure and records of mortality were available-a forest-dwelling population of the Asian elephant (at Nagarahole, India) and an African savannah elephant population (at Samburu, Kenya) that had experienced male-biased harvest regimes over 2-3 decades. For the Nagarahole population, the recorded numbers of male and female elephants killed illegally during 1981-2000 were 64% and 88% of the values predicted by the model, respectively, implying some non-detection or incomplete reporting while for the Samburu population the recorded and modeled numbers of harvest during 1990-1999 closely matched. This technique, applicable to any animal population following logistic growth model, can be especially useful for inferring illegal harvest numbers of forest elephants in Africa and Asia. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A fast iterative scheme based on the Newton method is described for finding the reciprocal of a finite segment p-adic numbers (Hensel code). The rate of generation of the reciprocal digits per step can be made quadratic or higher order by a proper choice of the starting value and the iterating function. The extension of this method to find the inverse transform of the Hensel code of a rational polynomial over a finite field is also indicated.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.

Relevância:

50.00% 50.00%

Publicador:

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The flow over a missile-shaped configuration is investigated by means of Schlieren visualization in short-duration facility producing free stream Mach numbers of 5.75 and 8. This visualization technique is demonstrated with a 41 degrees full apex angle blunt cone missile-shaped body mounted with and without cavity. Experiments are carried out with air as the test gas to visualize the flow field. The experimental results show a strong intensity variation in the deflection of light in a flow field, due to the flow compressibility. Shock stand-off distance measured with the Schlieren method is in good agreement with theory and computational fluid dynamic study for both the configurations. Magnitude of the shock oscillation for a cavity model may be greater than the case of a model without cavity. The picture of visualization shows that there is an outgoing and incoming flow closer to the cavity. Cavity flow oscillation was found to subside to steady flow with a decrease in the free stream Mach number.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A study of transpiration cooling of blunt bodies such as a hemicylinder is made by solving Navier-Stokes equations. An upwind, implicit time-marching code is developed for this purpose. The study is conducted for both perfect-gas and real-gas (chemical equilibrium) flows. Investigations are carried out for a special wall condition that is referred to as no heat flow into the wall condition. The effects of air injection on wall temperature are analyzed. Analyses are carried out for Mach numbers ranging between 6-10 and Reynolds numbers ranging between 10(6)-10(7). Studies are made for spatially constant as well as spatially varying mass injection rate distributions, White cold air injection reduces the wall temperature substantially, transpiration cooling is relatively less effective when the gas is in chemical equilibrium.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We build on the formulation developed in S. Sridhar and N. K. Singh J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients alpha(il) and eta(iml) are derived. We prove that when the velocity field is nonhelical, the transport coefficient alpha(il) vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X-3 and time tau; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Radler, M. Rheinhardt, and P. J. Kapyla Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor eta(ij) (tau). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Transpiration cooling over a flat plate at hypersonic Mach numbers is analyzed using Navier-Stokes equations, without the assumption of an isothermal wall with a prescribed wall temperature. A new criterion is proposed for determining a relevant range of blowing rates, which is useful in the parametric analysis. The wall temperature is found to decrease with the increasing blowing rate, but this effect is not uniform along the plate. The effect is more pronounced away from the leading edge. The relative change in the wall temperature is affected stronger by blowing at high Reynolds numbers. (AIAA)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A three-component accelerometer balance system is used to study the drag reduction effect of an aerodisc on large angle blunt cones flying at hypersonic Mach numbers. Measurements in a hypersonic shock tunnel at a freestream Mach number of 5.75 indicate more than 50% reduction in the drag coefficient for a 120degrees apex angle blunt cone with a forward facing aerospike having a flat faced aerodisc at moderate angles of attack. Enhancement of drag has been observed for higher angles of attack due to the impingement of the flow separation shock on the windward side of the cone. The flowfields around the large angle blunt cone with aerospike assembly flying at hypersonic Mach numbers are also simulated numerically using a commercial CFD code. The pressure and density levels on the model surface, which is under the aerodynamic shadow of the flat disc tipped spike, are found very low and a drag reduction of 64.34% has been deduced numerically.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The flow in a square cavity is studied by solving the full Navier–Stokes and energy equations numerically, employing finite-difference techniques. Solutions are obtained over a wide range of Reynolds numbers from 0 to 50000. The solutions show that only at very high Reynolds numbers (Re [gt-or-equal, slanted] 30000) does the flow in the cavity completely correspond to that assumed by Batchelor's model for separated flows. The flow and thermal fields at such high Reynolds numbers clearly exhibit a boundary-layer character. For the first time, it is demonstrated that the downstream secondary eddy grows and decays in a manner similar to the upstream one. The upstream and downstream secondary eddies remain completely viscous throughout the range of Reynolds numbers of their existence. It is suggested that the behaviour of the secondary eddies may be characteristic of internal separated flows.