166 resultados para DIFFRACTION LIMIT
Resumo:
A direct and simple approach, utilizing Watson's lemma, is presented for obtaining an approximate solution of a three-part Wiener-Hopf problem associated with the problem of diffraction of a plane wave by a soft strip.
Resumo:
Alinite cements have been synthesized using mining and steel plant wastes and pulverized fuel ash (fly ash) as raw materials and a clinkering temperature of 1150°C. The cements possess hydration characteristics comparable to those of portland cements. X-ray diffraction studies on these samples confirm the presence of alinite as the predominant phase. MAS 29Si NMR spectra have been used to distinguish alinite and alite cements. While both show resonances characteristic of Q° type silicate species, the portland cements exhibit three distinct peaks corresponding to three inequivalent SiO4 units present, while alinite shows a single sharp peak corresponding to the unique Si position.
Resumo:
Electron and x-ray diffraction experiments on the metlt-spun Al100−x Fe x (x=14, 18, 25) alloys are carried out. It is observed that all the melt-spun alloys possessing the quasi-crystalline phases have icosahedral point-group symmetry.
Resumo:
Crystal and molecular structure of a compound 4-cyanobiphenyl-4'-heptylbiphenyl carboxylate (7CBB), which exhibit both monolayer smectic A and nematic phases, have been determined by direct methods using single crystal X-ray diffraction data. The structure is monoclinic with the space group P21/c and Z = 4. The unit cell parameters are a = 16.9550(5) Aring, b = 5.5912(18) Aring, c = 27.5390(9) Aring, agr = 90.000°, β = 93.986(6)°, and γ = 90.000°. Packing of the molecules is found to be precursor to SmC phase, although SmA1 phase is observed on melting. Several strong van der Waals interactions are observed in the core part of the neighboring molecular pairs. Crystal to mesophase transition is probably of reconstitutive nature. Geometry, packing, and nature of crystal-mesophase transition are compared to those in 6CBB.
Resumo:
The Fraunhoffer diffraction analysis of cloud-covered satellite imagery has shown that the diffraction pattern follows approximately cosine squared distribution. The overshooting tops of clouds and the shadows cast by them contribute much to the diffraction of light, particularly in the high-frequency range. Indeed, cloud-covered imagery can be distinguished from cloud-free imagery on the basis of rate of decay of the diffracted light power in the high-frequency band.
Resumo:
The electronic structure of group II-VI semiconductors in the stable wurtzite form is analyzed using state-of-the-art ab initio approaches to extract a simple and chemically transparent tight-binding model. This model can be used to understand the variation in the bandgap with size, for nanoclusters of these compounds. Results complement similar information already available for same systems in the zinc blende structure. A comparison with all available experimental data on quantum size effects in group II-VI semiconductor nanoclusters establishes a remarkable agreement between theory and experiment in both structure types, thereby verifying the predictive ability of our approach. The significant dependence of the quantum size effect on the structure type suggests that the experimental bandgap change at a given size compared to the bulk bandgap, may be used to indicate the structural form of the nanoclusters, particularly in the small size limit, where broadening of diffraction features often make it difficult to unambiguously determine the structure.
Resumo:
The vertical uplift resistance of two interfering rigid rough strip anchors embedded horizontally in sand at shallow depths has been examined. The analysis is performed by using an upper bound theorem o limit analysis in combination with finite elements and linear programming. It is specified that both the anchors are loaded to failure simultaneously at the same magnitude of the failure load. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (xi(gamma)) is determined. On account of interference, the magnitude of xi(gamma) is found to reduce continuously with a decrease in the spacing between the anchors. The results from the numerical analysis were found to compare reasonably well with the available theoretical data from the literature.
Resumo:
The properties of Co4Sb12 with various In additions were studied. X-ray diffraction revealed the presence of the pure δ-phase of In0.16Co4Sb12, whereas impurity phases (γ-CoSb2 and InSb) appeared for x = 0.25, 0.40, 0.80, and 1.20. The homogeneity and morphology of the samples were observed by Seebeck microprobe and scanning electron microscopy, respectively. All the quenched ingots from which the studied samples were cut were inhomogeneous in the axial direction. The temperature dependence of the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) was measured from room temperature up to 673 K. The Seebeck coefficient of all In-added Co4Sb12 materials was negative. When the filler concentration increases, the Seebeck coefficient decreases. The samples with In additions above the filling limit (x = 0.22) show an even lower Seebeck coefficient due to the formation of secondary phases: InSb and CoSb2. The temperature variation of the electrical conductivity is semiconductor-like. The thermal conductivity of all the samples decreases with temperature. The central region of the In0.4Co4Sb12 ingot shows the lowest thermal conductivity, probably due to the combined effect of (a) rattling due to maximum filling and (b) the presence of a small amount of fine-dispersed secondary phases at the grain boundaries. Thus, regardless of the non-single-phase morphology, a promising ZT (S 2 σT/κ) value of 0.96 at 673 K has been obtained with an In addition above the filling limit.
Resumo:
In the design of a windmill using a sail type rotor, there arose a need to protect the structure against damage due to overloading in excessive winds. This need was satisfied by using a novel form of load limiter in the support system of sails of the windmill. This note will analyze the load capacity wires so that one can design wires for any specified limit load.
Resumo:
We present a new algorithm for continuation of limit cycles of autonomous systems as a system parameter is varied. The algorithm works in phase space with an ordered set of points on the limit cycle, along with spline interpolation. Currently popular algorithms in bifurcation analysis packages compute time-domain approximations of limit cycles using either shooting or collocation. The present approach seems useful for continuation near saddle homoclinic points, where it encounters a corner while time-domain methods essentially encounter a discontinuity (a relatively short period of rapid variation). Other phase space-based algorithms use rescaled arclength in place of time, but subsequently resemble the time-domain methods. Compared to these, we introduce additional freedom through a variable stretching of arclength based on local curvature, through the use of an auxiliary index-based variable. Several numerical examples are presented. Comparisons with results from the popular package, MATCONT, are favorable close to saddle homoclinic points.
Resumo:
Plastic limit of fine-grained soils is conventionally determined in the laboratory by the soil thread rolling method. Many adverse comments have been recorded in the geotechnical engineering literature on the method about its reproducibility and operator dependency. The presen experimental study, which is based on a well-planned and meticulously executed experimental program, critically evaluates the effect of size of the rolled soil thread on the plastic limit of fine-grained soil and the operator dependency of the results. The results have shown that if the plastic limit tests are performed by a trained operator, then consistent results can be obtained and that the effect of size of the rolled soil thread on plastic limit is negligibly small.
Resumo:
Phase separation resulting in a single-crystal-single-crystal transition accompanied by a polycrystalline phase following the dehydration of hydrated bimetallic sulfates [Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O and K4Cd3-(SO4)(5)center dot 3H(2)O] has been investigated by in situ variable-temperature single-crystal X-ray diffraction. With two examples, we illustrate the possibility of generating structural frameworks following dehydration in bimetallic sulfates, which refer to the possible precursor phases at that temperature leading to the mineral formation. The room-temperature structure of Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O is trigonal, space group R (3) over bar. On heating the crystal in situ on the diffractometer, the diffraction images display spherical spots and concentric rings suggesting phase separation, with the spherical spots getting indexed in a monoclinic space group, C2/c. The structure determination based on this data suggests the formation of Na2Mn(SO4)(2). However, the diffraction images from concentric rings could not be indexed. In the second example, the room-temperature structure is determined to be K4Cd3(SO4)(5)center dot 3H(2)O, crystallizing in a monoclinic space group, P2(1)/n. On heating the crystal in situ, the diffraction images collected also have both spherical spots and diffuse rings. The spherical spots could be indexed to a cubic crystal system, space group P2(1)3, and the structure is K4Cd3(SO4)(3). The possible mechanism for the phase transition in the dehydration regime resulting in this remarkable single-crystal to single-crystal transition with the appearance of a surrogate polycrystalline phase is proposed.
Resumo:
The heats of combustion of mono-, di-, tri- and tetramethylammonium perchlorates have been determined by bomb calorimetry. The data have been used to explain why the thermal behavior of ammonium perchlorate (AP) is considerably modified in presence of these compounds as shown by differential thermal analysis. Above a particular concentration of methylammonium perchlorate (MAP), AP ignites in a single step around 290°C. The minimum concentration of a MAP (mono-, di-, tri- or tetra-) needed to cause ignition of AP in a single step depends on intramolecular “elemental stoichiometric coefficient” of the mixtures that has the same value regardless of the MAP. Furthermore, the calorimetric values of these mixtures are the same. The heat evolved on ignition of such a composition appears to determine the lower concentration limit of combustion of its mixture with AP.
Resumo:
Dichromated gelatin is thought to be a good substitute for photographic emulsions in some uses. The results of a systematic study of the effect of the pH of the developer on the diffraction efficiency of volume holographic gratings recorded in dye sensitized dichromated gelatin are presented.
Resumo:
Neutron diffraction techniques have been employed to investigate the structure of PbO-PbCl2 glasses as a function of composition in the nominal range PbO.PbCl2 to 9PbO.PbCl2. It is concluded that, whereas the first Pb-O distance is well defined, the distribution of Pb-Cl distances is much broader, in agreement with a previous EXAFS study.