33 resultados para DIETARY LIPIDS
Resumo:
The effect of neutralizing FSH or LH on ovarian lipids in the cycling hamster was studied. In the normal cycling hamster on the day of proestrus, histochemical examination revealed the presence of sudanophilic lipids in the granulosa cells of the follicles and in the interstitium. A clear reduction in the intensity of lipid staining was observed on proestrus in the ovary of hamsters treated with FSH antiserum on the previous proestrus. Similar treatment with antiserum to LH, on the other hand, caused an accumulation of lipids in these structures. Estimation of the free and esterified fractions of cholesterol and triglycerides in the nonluteal tissue of the ovary of hamsters on proestrus following treatment with FSH antiserum on the previous proestrus revealed a significant reduction in all 3 lipid components. Even a short term deprivation of FSH caused a similar reduction in these lipids in the ovary. In contrast, treatment with LH antiserum either on the previous proestrus or on the previous day (diestrus-2) resulted in an enhancement in esterified cholesterol and triglycerides, while it caused a reduction in the free cholesterol fraction of the ovary on proestrus.It is suggested that though treatment with antisera to either FSH or LH causes a disruption in follicular maturation, their effect on lipid metabolism is different. A positive role for FSH and LH in maintaining normal sterol and triglyceride levels in the nonluteal ovarian tissue of cycling hamster is indicated.
Resumo:
Two series of cholesterol-based cationic gemini lipids with and without hydroxyl functions at the headgroups possessing different lengths of polymethylene -(CH2)(n)-] (n = 3, 4, 5, 6, 12) spacer have been synthesized. Each gemini lipid formed stable suspension in water. The suspensions of these gemini lipids in water were investigated using transmission electron microscopy, dynamic light scattering, zeta potential measurements and X-ray diffraction to characterize the nature of the individual aggregates formed therein. The aggregation properties of these gemini lipids in water were found to strongly depend upon the length of the spacer and the presence of hydroxyl group at the headgroup region. Lipoplex formation (DNA binding) and the release of the DNA from such lipoplexes were performed to understand the nature of interactions that prevail between these cationic cholesterol aggregates and duplex DNA. The interactions between such gemini lipids and DNA depend both on the presence of OH on the headgroups and the spacer length between the headgroups. Finally, we studied the effect of incorporation of each cationic gemini lipid into dipalmitoyl phosphatidylcholine vesicles using differential scanning calorimetry. The properties of the resulting mixed membranes were found again to depend upon the nature of the headgroup and the spacer chain length.
Resumo:
Stable carbon isotope ratios in bone collagen have been used in a variety of dietary studies in modern and fossil animals, including humans. Inherent in the stable isotope technique is the assumption that the isotopic signature is a reflection of the diet and is persistent in collagen because this is a relatively inert protein. Carbon isotope analyses of bones from a southern Indian population of Asian elephant (Elephas maximus), a long-lived mammal that alternates seasonally between a predominantly C3 (browse) and C4 (grass) plant diet, showed two patterns that have important implications for dietary interpretation based on isotopic studies. Relative to the quantity of the two plant types consumed on average, the ?13C signal in collagen indicated that more carbon was incorporated from C3 plants, possibly due to their higher protein contribution. There was a much greater variance in ?13C values of collagen in sub-adult (range -10.5� to-22.7�, variance=14.51) compared to adult animals (range -16.0� to -20.3�, variance=1.85) pointing to high collagen turnover rates and non-persistent isotopic signatures in younger, growing animals. It thus seems important to correct for any significant relative differences in nutritive value of food types and also consider the age of an animal before drawing definite conclusions about its diet from isotope ratios.
Resumo:
Six new vesicle-forming, cationic surfactant lipids are synthesized. Four of them contain 'flat' aromatic units at different locations of hydrophobic segments. In order to estimate the influence of aromatic units in the lipid monomer two other surfactant lipids of related structure with n-butyloxy units in the places of aromatic groups were also prepared. Transmission electron microscopy confirmed the vesicular membrane formation from these newly synthesized lipids. DSC or temperature-dependent keto-enol tautomerism of benzoylacetanilide-doped vesicles reveal a remarkable increase in the thermal stability of the membranes formed from aromatic surfactant lipids in contradistinction to their counterparts that contain n-butyloxy units. The enhanced thermal stability originates presumably as a consequence of inter-monomer stacking.
Resumo:
We have synthesized five new cholesterol based gemini cationic lipids possessing hydroxyethyl (-CH2CH2OH) function on each head group, which differ in the length of the polymethylene spacer chain. These gemini lipids are important for gene delivery processes as they possess pre-optimized molecular features, e. g., cholesterol backbone, ether linkage and a variable spacer chain between both the headgroups of the gemini lipids. Cationic liposomes were prepared from each of these lipids individually and as a mixture of individual cationic gemini lipid and 1,2-dioleoyl phosphatidylethanolamine (DOPE). Each gemini lipid based formulation induced better transfection activity than that of their monomeric counterpart. One such gemini lipid with a -(CH2)(12)-spacer, HG-12, showed dramatic increase in the mean fluorescence intensity due to the expression of green-fluorescence protein (GFP) in the presence of 10% FBS compared to the conditions where there was no serum. Other gemini lipids retained their gene transfection efficiency without any marked decrease in the presence of serum. The only exception was seen with the gemini with a -(CH2)(3)-spacer, HG-3, which on gene transfection in the presence of 10% FBS lost similar to 70% of its transfection efficiency. Overall the gemini lipid with a -(CH2)(5)-spacer, HG-5, showed the highest transfection activity at N/P (lipid/DNA) ratio of 0.5 and lipid : DOPE molar ratio of 2. Upon comparison of the relevant parameters, e. g., %-transfected cells, the amount of DNA transfected to each cell and %-cell viability all together against Lipofectamine 2000, one of the best commercial transfecting agents, the optimized lipid formulation based on DOPE/HG-5 was found to be comparable. In terms of its ability to induce gene-transfer in the presence of serum and shelf-life DOPE/HG-5 liposome was found to be superior to its commercial counterpart. Confocal imaging analysis confirmed that in the presence of 10% serum using a Lipid : DOPE of 1 : 4 and N/P charge ratio of 0.75 with 1.2 mu g DNA per well, HG-5 is better than Lipofectamine 2000.
Resumo:
Eight new bis-cationic dimeric lipids 2a-h have been synthesized; TEM of their aqueous dispersions confirmed the vesicle formation and from the thermal, spectroscopic, DLS and XRD studies it has been revealed that they form three different kinds of membranous aggregate depending on the m-value.
Resumo:
Eight new dimeric lipids, in which the two Me2N+ ion headgroups are separated by a variable number of polymethylene units [-(CH2)(m)-], have been synthesized. The electron micrograph (TEM) and dynamic light scattering (DLS) of their aqueous dispersions confirmed the formation of vesicular-type aggregates. The vesicle sizes and morphologies were found to depend strongly on the m value, the method, and thermal history of the vesicle preparation. Information on the thermotropic properties of the resulting vesicles was obtained from microcalorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, the T-m values for these vesicles revealed a nonlinear dependence on spacer chain length (m value). These vesicles were able to entrap riboflavin. The rates of permeation of the OH- ion under an imposed transmembrane pH gradient were also found to depend significantly on the m value. X-Ray diffraction of the cast films of the lipid dispersions elucidated the nature and the thickness of these membrane organizations, and it was revealed that these lipids organize in three different ways depending on the m value. The EPR spin-probe method with the doxylstearic acids 5NS, 12NS, and 16NS, spin-labeled at various positions of stearic acid, was used to establish, the chain-flexibility gradient and homogeneity of these bilayer assemblies. The apparent fusogenic propensities of these bipolar tetraether lipids were investigated in the presence of Na2SO4 with fluorescence-resonance energy-transfer fusion assay. Small unilamellar vesicles formed from 1 and three representative biscationic lipids were also studied with fluorescence anisotropy and H-1 NMR spectroscopic techniques in the absence and the presence of varying amounts of cholesterol.
Resumo:
Five novel cationic lipids with fully or partially non-scissile linkage regions between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized. The membrane-forming properties of these new lipids are briefly presented.
Resumo:
Lipoplexes formed by the pEGFP-C3 plasmid DNA (pDNA) and lipid mixtures containing cationic gemini surfactant of the 1,2-bis(hexadecyl dimethyl ammonium) Acmes family referred to as C16CnC16, where n = 2 3, 5, or 12, and the zwitterionic helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been studied from a wide variety of physical, chemical, and biological standpoints. The study has been carried out using several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), cryo-TEM, gene transfection, cell viability/cytotoxicity, and confocal fluorescence microscopy. As reported recently in a communication (J. Am. Chem. Soc. 2011, 133, 18014), the detailed physicochemical and biological studies confirm that, in the presence of the studied series lipid mixtures, plasmid DNA is compacted with a large number of its associated Na+ counterions. This in turn yields a much lower effective negative charge, q(pDNA)(-), a value that has been experimentally obtained for each mixed lipid mixture. Consequently, the cationic lipid (CL) complexes prepared with pDNA and CL/DOPE mixtures to be used in gene transfection require significantly less amount of CL than the one estimated assuming a value of q(DNA)(-) = -2. This drives to a considerably lower cytotoxicity of the gene vector. Depending on the CL molar composition, alpha, of the lipid mixture, and the effective charge ratio of the lipoplex, rho(eff), the reported SAXS data indicate the presence of two or three structures in the same lipoplex, one in the DOPE-rich region, other in the CL-rich region, and another one present at any CL composition. Cryo-TEM and SAXS studies with C16CnC16/DOPE-pDNA lipoplexes indicate that pDNA is localized between the mixed lipid bilayers of lamellar structures within a monolayer of similar to 2 nm. This is consistent with a highly compacted supercoiled pDNA conformation compared with that of linear DNA. Transfection studies were carried out with HEK293T, HeLa, CHO, U343, and H460 cells. The alpha and rho(eff) values for each lipid mixture were optimized on HEK293T cells for transfection, and using these values, the remaining cells were also transfected in absence (-FBS-FBS) and presence (-FBS+FBS) of serum. The transfection efficiency was higher with the CLs of shorter gemini spacers (n = 2 or 3). Each formulation expressed GFP on pDNA transfection and confocal fluorescence microscopy corroborated the results. C16C2C16/DOPE mixtures were the most efficient toward transfection among all the lipid mixtures and, in presence of serum, even better than the Lipofectamine2000, a commercial transfecting agent Each lipid combination was safe and did not show any significant levels of toxicity. Probably, the presence of two coexisting lamellar structures in lipoplexes synergizes the transfection efficiency of the lipid mixtures which are plentiful in the lipoplexes formed by CLs with short spacer (n = 2, 3) than those with the long spacer (n = 5, 12).
Resumo:
Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (mu) of 0.28 day(-1) and biomass productivities of 132 mg L-1 day(-1). The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g L-1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.
Resumo:
Background: Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)(n)- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. Methodology/Principal Findings: To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. Conclusions/Significance: -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies.
Resumo:
Lipoplex-type nanoaggregates prepared from pEGFP-C3 plasmid DNA (pDNA) and mixed liposomes, with a gemini cationic lipid (CL) 1,2-bis(hexadecyl imidazolium) alkanes], referred as (C(16)Im)(2)C-n (where C-n is the alkane spacer length, n = 2, 3, 5, or 12, between the imidazolium heads) and DOPE zwitterionic lipid, have been analyzed by zeta potential, gel electrophoresis, SAXS, cryo-TEM, fluorescence anisotropy, transfection efficiency, fluorescence confocal microscopy, and cell viability/cytotoxicity experiments to establish a structure-biological activity relationship. The study, carried out at several mixed liposome compositions, alpha, and effective charge ratios, rho(eff), of the lipoplex, demonstrates that the transfection of pDNA using CLs initially requires the determination of the effective charge of both. The electrochemical study confirms that CLs with a delocalizable positive charge in their headgroups yield an effective positive charge that is 90% of their expected nominal one, while pDNA is compacted yielding an effective negative charge which is only 10-25% than that of the linear DNA. SAXS diffractograms show that lipoplexes formed by CLs with shorter spacer (n = 2, 3, or 5) present three lamellar structures, two of them in coexistence, while those formed by CL with longest spacer (n = 12) present two additional inverted hexagonal structures. Cryo-TEM micrographs show nanoaggregates with two multilamellar structures, a cluster-type (at low alpha value) and a fingerprint-type, that coexist with the cluster-type at moderate alpha composition. The optimized transfection efficiency (TE) of pDNA, in HEK293T, HeLa, and H1299 cells was higher using lipoplexes containing gemini CLs with shorter spacers at low a value. Each lipid formulation did not show any significant levels of toxicity, the reported lipoplexes being adequate DNA vectors for gene therapy and considerably better than both Lipofectamine 2000 and CLs of the 1,2-bis(hexadecyl ammnoniun) alkane series, recently reported.