266 resultados para DEFORMATION METHODS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One difficulty in summarising biological survivorship data is that the hazard rates are often neither constant nor increasing with time or decreasing with time in the entire life span. The promising Weibull model does not work here. The paper demonstrates how bath tub shaped quadratic models may be used in such a case. Further, sometimes due to a paucity of data actual lifetimes are not as certainable. It is shown how a concept from queuing theory namely first in first out (FIFO) can be profitably used here. Another nonstandard situation considered is one in which lifespan of the individual entity is too long compared to duration of the experiment. This situation is dealt with, by using ancilliary information. In each case the methodology is illustrated with numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method of modeling material behavior which accounts for the dynamic metallurgical processes occurring during hot deformation is presented. The approach in this method is to consider the workpiece as a dissipator of power in the total processing system and to evaluate the dissipated power co-contentJ = ∫o σ ε ⋅dσ from the constitutive equation relating the strain rate (ε) to the flow stress (σ). The optimum processing conditions of temperature and strain rate are those corresponding to the maximum or peak inJ. It is shown thatJ is related to the strain-rate sensitivity (m) of the material and reaches a maximum value(J max) whenm = 1. The efficiency of the power dissipation(J/J max) through metallurgical processes is shown to be an index of the dynamic behavior of the material and is useful in obtaining a unique combination of temperature and strain rate for processing and also in delineating the regions of internal fracture. In this method of modeling, noa priori knowledge or evaluation of the atomistic mechanisms is required, and the method is effective even when more than one dissipation process occurs, which is particularly advantageous in the hot processing of commercial alloys having complex microstructures. This method has been applied to modeling of the behavior of Ti-6242 during hot forging. The behavior of α+ β andβ preform microstructures has been exam-ined, and the results show that the optimum condition for hot forging of these preforms is obtained at 927 °C (1200 K) and a strain rate of 1CT•3 s•1. Variations in the efficiency of dissipation with temperature and strain rate are correlated with the dynamic microstructural changes occurring in the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison is made of the performance of a weather Doppler radar with a staggered pulse repetition time and a radar with a random (but known) phase. As a standard for this comparison, the specifications of the forthcoming next generation weather radar (NEXRAD) are used. A statistical analysis of the spectral momentestimates for the staggered scheme is developed, and a theoretical expression for the signal-to-noise ratio due to recohering-filteringrecohering for the random phase radar is obtained. Algorithms for assignment of correct ranges to pertinent spectral moments for both techniques are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, a conclusive evidence of the operation of planar slip along with grain boundary mediated mechanisms has been reported during large strain deformation of nanocrystalline nickel. Dislocation annihilation mechanism such as mechanical recovery has been found to play an important role during the course of deformation. The evidences rely on x-ray based techniques, such as dislocation density determination and crystallographic texture measurement as well as microstructural observation by electron microscopy. The characteristic texture evolution in this case is an indication of normal slip mediated plasticity in nanocrystalline nickel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-stationary signal modeling is a well addressed problem in the literature. Many methods have been proposed to model non-stationary signals such as time varying linear prediction and AM-FM modeling, the later being more popular. Estimation techniques to determine the AM-FM components of narrow-band signal, such as Hilbert transform, DESA1, DESA2, auditory processing approach, ZC approach, etc., are prevalent but their robustness to noise is not clearly addressed in the literature. This is critical for most practical applications, such as in communications. We explore the robustness of different AM-FM estimators in the presence of white Gaussian noise. Also, we have proposed three new methods for IF estimation based on non-uniform samples of the signal and multi-resolution analysis. Experimental results show that ZC based methods give better results than the popular methods such as DESA in clean condition as well as noisy condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the problem of speaker adaptation in speech recognition, the performance depends on the availability of adaptation data. In this paper, we have compared several existing speaker adaptation methods, viz. maximum likelihood linear regression (MLLR), eigenvoice (EV), eigenspace-based MLLR (EMLLR), segmental eigenvoice (SEV) and hierarchical eigenvoice (HEV) based methods. We also develop a new method by modifying the existing HEV method for achieving further performance improvement in a limited available data scenario. In the sense of availability of adaptation data, the new modified HEV (MHEV) method is shown to perform better than all the existing methods throughout the range of operation except the case of MLLR at the availability of more adaptation data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental investigations in ultrasonics in India date back to the early 20th century. But, fundamental and applied research in the field of nondestructive evaluation (NDE) came much later. In the last four decades it has grown steadily in academic institutions, national laboratories and industry. Currently, commensurate with rapid industrial growth and realisation of the benefits of NDE, the activity is becoming much stronger, deeper, broader and very wide spread. Acoustic Emission (AE) is a recent entry into the field of nondestructive evaluation. Pioneering efforts in India in AE were carried out at the Indian Institute of Science in the early 1970s. The nuclear industry was the first to utilise it. Current activity in AE in the country spans materials research, incipient failure detection, integrity evaluation of structures, fracture mechanics studies and rock mechanics. In this paper, we attempt to project the current scenario in ultrasonics and acoustic emission research in India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-5 wt pct Si alloy is processed by upset forging in the temperature range 300 K to 800 K and in the strain rate range 0.02 to 200 s−1. The hardness and tensile properties of the product have been studied. A “safe” window in the strain rate-temperature field has been identified for processing of this alloy to obtain maximum tensile ductility in the product. For the above strain rate range, the temperature range of processing is 550 K to 700 K for obtaining high ductility in the product. On the basis of microstructure and the ductility of the product, the temperature-strain rate regimes of damage due to cavity formation at particles and wedge cracking have been isolated for this alloy. The tensile fracture features recorded on the product specimens are in conformity with the above damage mechanisms. A high temperature treatment above ≈600 K followed by fairly fast cooling gives solid solution strengthening in the alloy at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of an infinite transversely isotropic circular cylindrical shell subjected to an axisymmetric radial external line load is investigated using elasticity theory, classical shell theory and shear deformation theory. The results obtained by these methods are compared for two ratios of inner to outer shell radius and for varying degrees of anisotropy. Some typical results are given here to show the effect of anisotropy and the thickness of the shell on the distribution of stresses and displacements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive set of new configurations for the holographic simulation of a wide variety of mirrors is described. These holographically simulated mirrors (HSMs) have been experimentally realized and their imaging performance has been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much progress in nanoscience and nanotechnology has been made in the past few years thanks to the increased availability of sophisticated physical methods to characterize nanomaterials. These techniques include electron microscopy and scanning probe microscopies, in addition to standard techniques such as X-ray and neutron diffraction, X-ray scattering, and various spectroscopies. Characterization of nanomaterials includes the determination not only of size and shape, but also of the atomic and electronic structures and other important properties. In this article we describe some of the important methods employed for characterization of nanostructures, describing a few case studies for illustrative purposes. These case studies include characterizations of Au, ReO3, and GaN nanocrystals; ZnO, Ni, and Co nanowires; inorganic and carbon nanotubes; and two-dimensional graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combustion is a complex phenomena involving a multiplicity of variables. Some important variables measured in flame tests follow [1]. In order to characterize ignition, such related parameters as ignition time, ease of ignition, flash ignition temperature, and self-ignition temperature are measured. For studying the propagation of the flame, parameters such as distance burned or charred, area of flame spread, time of flame spread, burning rate, charred or melted area, and fire endurance are measured. Smoke characteristics are studied by determining such parameters as specific optical density, maximum specific optical density, time of occurrence of the densities, maximum rate of density increase, visual obscuration time, and smoke obscuration index. In addition to the above variables, there are a number of specific properties of the combustible system which could be measured. These are soot formation, toxicity of combustion gases, heat of combustion, dripping phenomena during the burning of thermoplastics, afterglow, flame intensity, fuel contribution, visual characteristics, limiting oxygen concentration (OI), products of pyrolysis and combustion, and so forth. A multitude of flammability tests measuring one or more of these properties have been developed [2]. Admittedly, no one small scale test is adequate to mimic or assess the performance of a plastic in a real fire situation. The conditions are much too complicated [3, 4]. Some conceptual problems associated with flammability testing of polymers have been reviewed [5, 6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the optimization of the cross-section profile of a cantilever beam under deformation-dependent loads. Such loads are encountered in plants and trees, cereal crop plants such as wheat and corn in particular. The wind loads acting on the grain-bearing spike of a wheat stalk vary with the orientation of the spike as the stalk bends; this bending and the ensuing change in orientation depend on the deformation of the plant under the same load.The uprooting of the wheat stalks under wind loads is an unresolved problem in genetically modified dwarf wheat stalks. Although it was thought that the dwarf varieties would acquire increased resistance to uprooting, it was found that the dwarf wheat plants selectively decreased the Young's modulus in order to be compliant. The motivation of this study is to investigate why wheat plants prefer compliant stems. We analyze this by seeking an optimal shape of the wheat plant's stem, which is modeled as a cantilever beam, by taking the large deflection of the stem into account with the help of co-rotational finite element beam modeling. The criteria considered here include minimum moment at the fixed ground support, adequate stiffness and strength, and the volume of material. The result reported here is an example of flexibility, rather than stiffness, leading to increased strength.