49 resultados para Cyclin-Dependent Kinase Inhibitor p15


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATP gamma S, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr(286)-alpha-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr(286) autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcium-dependent protein kinases (CPKs) constitute a unique family of kinases involved in many physiological responses in plants. Biochemical and kinetic properties of a recombinant Swainsona canescens calcium-dependent protein kinase (ScCPK1) were examined in this study. The optimum pH and temperature for activity were pH 7.5 and 37 degrees C, respectively. Substrate phosphorylation activity of ScCPK1 was calmodulin (CaM) independent. Yet CaM antagonists, W7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide] and calmidazolium inhibited the activity with IC50 values of 750 nM and 350 pM, respectively. Both serine and threonine residues were found to be phosphorylated in auto-phosphorylated ScCPK1 and in histone III-S phosphorylated by ScCPK1. The Ca2+] for half maximal activity (K-0.5) was found to be 0.4 mu M for ScCPK1 with histone III-S as substrate. Kinetic analysis showed that Km of ScCPK1 for histone III-S was 4.8 mu M. These data suggest that ScCPK1 is a functional Ser/Thr kinase, regulated by calcium, and may have a role in Ca2+-mediated signaling in S. canescens. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1) from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in V-max of the enzyme activity by these phospholipids significantly decreased the K-m indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K-1/2 = 114 nM) compared to PA (K-1/2 = 335 nM). We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In plants, calcium-dependent protein kinases (CDPKs) are key intermediates in calcium-mediated signaling that couple changes in Ca2+ levels to a specific response. In the present study, we report the high-level soluble expression of calcium-dependent protein kinase1 from Cicer arietinum (CaCDPK1) in Escherichia coli. The expression of soluble CaCDPK1 was temperature dependent with a yield of 3-4 mg/l of bacterial culture. CaCDPK1 expressed as histidine-tag fusion protein was purified using Ni-NTA affinity chromatography till homogeneity. The recombinant CaCDPK1 protein exhibited both calcium-dependent autophosphorylation and substrate phosphorylation activities with a V (max) and K (m) value of 13.2 nmol/min/mg and 34.3 mu M, respectively, for histone III-S as substrate. Maximum autophosphorylation was seen only in the presence of calcium. Optimum temperature for autophosphorylation was found to be 37 A degrees C. The recombinant protein showed optimum pH range of 6-9. The role of autophosphorylation in substrate phosphorylation was investigated using histone III-S as exogenous substrate. Our results show that autophosphorylation happens before substrate phosphorylation and it happens via intra-molecular mechanism as the activity linearly depends on enzyme concentrations. Autophosphorylation enhances the kinase activity and reduces the lag phase of activation, and CaCDPK1 can utilize both ATP and GTP as phosphodonor but ATP is preferred than GTP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PCAF (KAT2B) belongs to the GNAT family of lysine acetyltransferases (KAT) and specifically acetylates the histone H3K9 residue and several nonhistone proteins. PCAF is also a transcriptional coactivator. Due to the lack of a PCAF KAT-specific small molecule inhibitor, the exclusive role of the acetyltransferase activity of PCAF is not well understood. Here, we report that a natural compound of the hydroxybenzoquinone class, embelin, specifically inhibits H3Lys9 acetylation in mice and inhibits recombinant PCAF-mediated acetylation with near complete specificity in vitro. Furthermore, using embelin, we have identified the gene networks that are regulated by PCAF during muscle differentiation, further highlighting the broader regulatory functions of PCAF in muscle differentiation in addition to the regulation via MyoD acetylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca2+ ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 mu M and 120 mu M indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 mu M and 1.7 mu M. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a alpha-helical rich protein. Calcium binding further increased the alpha-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. (C) 2015 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy. Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl(+) cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl(+) CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl(+) cells. NAC enhances imatinib-induced apoptosis of Bcr-Abl(+) cells by endothelial nitric oxide synthase-mediated production of nitric oxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatotoxicity due to overdose of the analgesic and antipyretic acetaminophen (A-PAIP) is a major cause of liver failure in adults. To better understand the contributions of different signaling pathways, the expression and role of Ras activation was evaluated after oral dosing of mice with APAP (400-500 mg/kg). Ras-guanosine triphosphate (GTP) is induced early and in an oxidative stress-dependent manner. The functional role of Ras activation was studied by a single intraperitoneal injection of the neutral sphingomyelinase and farnesyltransferase inhibitor (FTI) manumycin A (I mg/kg), which lowers induction of Ras-GTP and serum amounts of alanine aminotransferase (ALT). APAP dosing decreases hepatic glutathione amounts, which are not affected by manumycin A treatment. However, APAP-induced activation of c-Jun N-terminal kinase, which plays an important role, is reduced by manumycin A. Also, APAP-induced mitochondrial reactive oxygen species are reduced by manumycin A at a later time point during liver injury. Importantly, the induction of genes involved in the inflammatory response (including iNos, gp91phox, and Fasl) and serum amounts of proinflammatory cytokines interferon-gamma (IFN gamma) and tumor necrosis factor alpha, which increase greatly with APAP challenge, are suppressed with manumycin A. The FTI ctivity of manumycin A is most likely involved in reducing APAP-induced liver injury, because a specific neutral sphingomyelinase inhibitor, GW4869 (I mg/kg), did not show any hepatoprotective effect. Notably, a structurally distinct FTI, gliotoxin (I mg/kg), also inhibits Ras activation and reduces serum amounts of ALT and IFN-gamma after APAP dosing. Finally, histological analysis confirmed the hepatoprotective effect f manumycin A and gliotoxin during APAP-induced liver damage. Conclusion: This study identifies a key role for Ras activation and demonstrates the therapeutic efficacy of FTIs during APAP-induced liver injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. Methodology/Principal Findings: We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. Conclusions/Significance: In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safety, efficacy and enhanced transgene expression are the primary concerns while using any vector for gene therapy. One of the widely used vectors in clinical. trials is adenovirus which provides a safe way to deliver the therapeutic gene. However, adenovirus has poor transduction efficiency in vivo since most tumor cells express low coxsackie and adenovirus receptors. Similarly transgene expression remains low, possibly because of the chromatization of adenoviral genome upon infection in eukaryotic cells, an effect mediated by histone deacetylases (HDACs). Using a recombinant adenovirus (Ad-HSVtk) carrying the herpes simplex thymidine kinase (HSVtk) and GFP genes we demonstrate that HDAC inhibitor valproic acid can bring about an increase in CAR expression on host cells and thereby enhanced Ad-HSVtk infectivity. It also resulted in an increase in transgene (HSVtk and GFP) expression. This, in turn, resulted in increased cell kill of HNSCC cells, following ganciclovir treatment in vitro as well as in vivo in a xenograft nude mouse model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The silk glands of mulberry silkworm Bombyx mori are endoreplicating tissues in which the genomic DNA undergoes multiple rounds of replication without mitosis and nuclear division. In the absence of normal mitotic division, the cell cycle essentially alternates between the G1 and S phases. Cyclin E is crucial for the G1/S transition in both mitotic and endoreplicating cycles. We have cloned and characterized cyclin E (cyclin box) from B. mori, which is nearly identical to the Drosophila cyclin E box except for an insertion of 21 amino acids. Two distinct cyclin E transcripts (1.7 and 2.1 kb) were detected in the silk-gland cells of B. mori and in the B. mori-derived embryonic cell line, BmN. Using anti Cyclin E antibodies two protein bands of 52 and 44 kDa were detected in silk glands and BmN cells at Comparable levels. Both BmN- and the silk-gland cells showed the presence of the interacting kinase Cdk2. Transcripts of the mitotic cyclin, cyclin B, were barely detectable in the endoreplicating silk-gland cells and amounted to only 4-7% of that seen in the mitotically dividing BmN cells. The near absence of cyclin B transcripts and the abundant expression of cyclin E in the silk glands correlate well with the alternation of only G1 and S phases without the intervening mitosis in these cells. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of a gonadotropin receptor binding inhibitor in pooled porcine follicular fluid has been demonstrated. Porcine follicular fluid fractionation on DE-32 at near neutral pH, followed by a cation exchange chromatography on SPC-50 and Cibacron blue affinity chromatography, yielded a partially purified gonadotropin receptor binding inhibitor (GI-4). The partially purified GI binding inhibitor inhibited the binding of both 125I labelled hFSH and hCG to rat ovarian receptor preparation. SDS electrophoresis of radioiodinated partially purified GI followed by autoradiography made it possible to identify the binding component as a protein of molecular weight of 80000. Subjecting 125I labelled GI-4 to chromatography on Sephadex G-100 helped obtain a homogeneous material, Gl-5. The 125I labelled GI-5 exhibited in its binding to ovarian membrane preparations characteristics typical of a ligand-receptor interaction such as saturability, sensitivity to reaction conditions as time, ligand and receptor concentrations and finally displaceability by unlabelled inhibitor as well as FSH and hCG in a dose dependent manner. This material could bind ovarian receptors for both FSH and LH, its binding being inhibited by added FSH or hCG in a dose dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cell-free protein-synthesizing system has been reconstituted using the S-30 fraction or ribosomes and the S-100 fraction from Plasmodium falciparum. Addition of heme in vitro stimulates cell-free protein synthesis strikingly. Chloroquine inhibits the heme-dependent protein synthesis in the parasite lysate. The drug has also been found to inhibit parasite protein synthesis in situ at therapeutic concentrations soon after addition to parasite cultures. Ribosomes as well as the S-100 fraction isolated from such chloroquine-treated cultures are defective in protein synthesis. Addition of hemin plus glucose 6-phosphate or high concentrations of GTP, cAMP, and an active preparation of eIF-2 to the parasite cell-free system restores protein synthesis to a significant extent in chloroquine-treated cultures. Under conditions of inhibition of protein synthesis in situ by chloroquine in the culture, the parasite eukaryotic initiation factor 2-alpha- (eIF-2-alpha) is phosphorylated in the parasite lysate to a greater extent than that observed in the control culture. Addition of hemin in vitro suppresses this phosphorylation. eIF-2-alpha kinase activity is present in the parasite lysate and is not a contaminant derived from the human erythrocytes used to culture the parasite. The heme-chloroquine interactive effects can also be demonstrated with purified eIF-2-alpha kinase from rabbit reticulocyte lysate. It is proposed that chloroquine inhibits heme-dependent protein synthesis in the parasite and this is an early event mediating the growth-inhibitory effects of the drug.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase from mammalian and bacterial sources is a pyridoxal-5'-phosphate-containing enzyme, but the requirement of pyridoxal-5'-phosphate for the activity of the enzyme from plant sources is not clear. The specific activity of serine hydroxymethyltransferase isolated from mung bean (Vigna radiata) seedlings in the presence and absence of pyridoxal-5'-phosphate was comparable at every step of the purification procedure. The mung bean enzyme did not show the characteristic visible absorbance spectrum of pyridoxal-5'-phosphate protein. Unlike the enzymes from sheep, monkey, and human liver, which were converted to the apoenzyme upon treatment with L-cysteine and dialysis, the mung bean enzyme similarly treated was fully active. Additional evidence in support of the suggestion that pyridoxal-5'-phosphate may not be required for the mung bean enzyme was the observation that pencillamine, a well-known inhibitor of pyridoxal-5'-phosphate enzymes, did not perturb the enzyme spectrum or inhibit the activity of mung bean serine hydroxymethyltransferase. The sheep liver enzyme upon interaction with O-amino-D-serine gave a fluorescence spectrum with an emission maximum at 455 nm when excited at 360 nm. A 100-fold higher concentration of mung bean enzyme-O-amino-D-serine complex did not yield a fluorescence spectrum. The following observations suggest that pyridoxal-5'-phosphate normally present as a coenzyme in serine hydroxymethyltransferase was probably replaced in mung bean serine hydroxymethyltransferase by a covalently bound carbonyl group: (a) inhibiton by phenylhydrazine and hydroxylamine, which could not be reversed by dialysis and or addition of pyridoxal-5'-phosphate; (b) irreversible inactivation by sodium borohydride; (c) a spectrum characteristic of a phenylhydrazone upon interaction with phenylhydrazine; and (d) the covalent labeling of the enzyme with substrate/product serine and glycine upon reduction with sodium borohydride. These results indicate that in mung bean serine hydroxymethyltransferase, a covalently bound carbonyl group has probably replaced the pyridoxal-5'-phosphate that is present in the mammalian and bacterial enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleoside di- and triphosphates and adenosine regulate several components of the mucocilairy clearance process (MCC) that protects the lung against infections, via activation of epithelial purinergic receptors. However, assessing the contribution of individual nucleotides to MCC functions remains difficult due to the complexity of the mechanisms of nucleotide release and metabolism. Enzymatic activities involved in the metabolism of extracellular nucleotides include ecto-ATPases and secreted nucleoside diphosphokinase (NDPK) and adenyl kinase, but potent and selective inhibitors of these activities are sparse. In the present study, we discovered that ebselen markedly reduced NDPK activity while having negligible effect on ecto-ATPase and adenyl kinase activities. Addition of radiotracer gamma P-32]ATP to human bronchial epithelial (HBE) cells resulted in rapid and robust accumulation of P-32]-inorganic phosphate ((32)Pi). Inclusion of UDP in the incubation medium resulted in conversion of gamma P-32]ATP to P-32]UTP, while inclusion of AMP resulted in conversion of gamma P-32]ATP to P-32]ADP. Ebselen markedly reduced P-32]UTP formation but displayed negligible effect on (32)Pi or P-32]ADP accumulations. Incubation of HBE cells with unlabeled UTP and ADP resulted in robust ebselen-sensitive formation of ATP (IC50=6.9 +/- 2 mu M). This NDPK activity was largely recovered in HBE cell secretions and supernatants from lung epithelial A549 cells. Kinetic analysis of NDPK activity indicated that ebselen reduced the V-max of the reaction (K-i=7.6 +/- 3 mu M), having negligible effect on KM values. Our study demonstrates that ebselen is a potent noncompetitive inhibitor of extracellular NDPK.