146 resultados para Cyclic voltammetry of copper complexes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical redox reactions of ferrous/ferric (Fe2+/Fe3+) and hydroquinone/quinone (H(2)Q/Q) were studied on Pt and polyaniline (PANI)-deposited Pt electrodes in 0.5 M H2SO4-supporting electrolyte by cyclic voltammetry and ac impedance spectroscopy. A comparison of the experimental data obtained with the Pt and PANI/Pt electrodes suggested that the reactions were catalyzed by the PANI. Based on a relative increase in peak currents of cyclic voltammograms, catalytic efficiency (gamma(cv)) of the PANI was defined. There was an increase in gamma(cv) with an increase of scan rate and a decrease of concentration of Fe2+/Fe3+ or H(2)Q. The complex plane impedance spectrum of the electrode consisted of a semicircle in high frequency range and a linear spike in low frequency range. The exchange current density (i(0)) calculated using the semicircle part of the impedance showed Butler-Volmer kinetics with respect to concentration dependence. From a relative increase of i(0) on the PANI/Pt electrode, catalytic efficiency (gamma(eis)) was evaluated. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper(l) complexes of bis(phosphine) monoxide ligands, bis(diphenylphosphino)ethane monoxide (dppeo) and bis(diphenylphosphino)methane monoxide (dppmo) have been prepared and characterized. One of the complexes with dppeo was characterized by X-ray crystal structure analysis confirming Cu(I) coordination to hard and soft donors. The stability of these complexes in solution was probed via spectroscopic and electrochemical studies. Copper(I) is more readily oxidized in the presence of the hard 0 donor ligands. In solution, they readily exchange the hard donor O, for soft ligands. Although copper(l) prefers soft ligands and is more stable towards oxidation in their presence, it coordinates to hard donors when there is electrostatic or an entropy driven advantage. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six ternary copper(II) complexes of general formulation [CuLB] (1-6), where L is dianionic ONS-donor thiosemicarbazones derived from the condensation of salicylaldehyde with thiosemicarbazides and B is NN-donor heterocyclic bases like 2,2'-bipyridine, 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline, are prepared from a reaction of copper(II) acetate hydrate with the heterocyclic base (B) and the thiosemicarbazone (H2L) in MeOH, and structurally characterized by X-ray diffraction technique. Crystal structures of the complexes display a distorted square-pyramidal (4 + 1) coordination geometry having the ONS-donor thiosemicarbazone bonded at the basal plane. The chelating heterocyclic bases exhibit axial-equatorial mode of bonding. The complexes are one-electron paramagnetic and they show axial X-band EPR spectra in DMF-toluene glass at 77 K giving g(parallel to)(A(parallel to)) and g(perpendicular to) values of similar to2.2 (175 x 10(-4) cm(-1)) and similar to2.0 indicating a {d(x2-y2)}(1) ground state. The complexes show a d-d band near 570 nm and a charge transfer band near 400 nm in DMF. The complexes are redox active and exhibit a quasireversible Cu(II)-Cu(I) couple in DMF-0.1 M tetrabutylammonium perchlorate near 0.1 V vs. SCE. They are catalytically active in the oxidation of ascorbic acid in presence of dioxygen. The complexes with a CuN3OS coordination model the ascorbate oxidation property of dopamine beta-hydroxylase and peptidylglycine a-hydroxylating monooxygeanase. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition metal complexes of salicylhydrazone of anthranilhydrazide (H2L) were synthesised. The structures of metal complexes were characterized by various spectroscopic [IR, NMR, UV-Vis, EPR], thermal and other physicochemical methods. The single-crystal X-ray diffraction study of [Cu(HL)Cl]center dot H2O reveal its orthorhombic system with space group P2(1)2(1)2 and Z=4. The copper center has a distorted square planar geometry with ONO and Cl as the donor atoms. The ligand and its metal chelates have been screened for their antimicrobial and anti-tubercular activities using serial dilution method. Metal complexes in general have exhibited better antibacterial and antifungal activity than the free ligand and in few cases better than the standard used. Among the bacterial strains used, the complexes are highly potent against Gram-positive strains compared to Gram-negative. Anti-tubercular activity exhibited by the Co(II) complex is comparable with the standard used. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutral and cationic copper bis(thiosemicarbazone) complexes bearing methyl, phenyl, and hydrogen, on the diketo-backbone of the ligand have been synthesized. All of them were characterized by spectroscopic methods and in three cases by X-ray crystallography. In vitro cytotoxicity studies revealed that they are cytotoxic unlike the corresponding zinc complexes. Copper complexes Cu(GTSC) and Cu(GTSCHCl) derived from glyoxal-bis(4-methyl-4-phenyl-3-thiosemicarbazone) (GTSCH(2)) are the most cytotoxic complexes against various human cancer cell lines, with a potency similar to that of the anticancer drug adriamycin and up to 1000 fold higher than that of the corresponding zinc complex. Tritiated thymidine incorporation assay revealed that Cu(GTSC) and Cu(GTSCHCl) inhibit DNA synthesis substantially. Cell cycle analyses showed that Cu(GTSC) and Cu(GTSCHCl) induce apoptosis in HCT116 cells. The Cu(GTSCHCl) complex caused distinct DNA cleavage and Topo II alpha inhibition unlike that for Cu(GTSC). In vivo administration of Cu(GTSC) significantly inhibits tumor growth in HCT116 xenografts in nude mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper(II) complexes Cu(Fc-aa)(cur)] (1-3) of curcumin (Hcur) and N-ferrocenylmethyl-L-amino acids (Fc-aa), viz., ferrocenylmethyl-L-tyrosine (Fc-TyrH), ferrocenylmethyl-L-tryptophan (Fc-TrpH) and ferrocenylmethyl-L-methionine (Fc-MetH), were prepared and characterized. The DNA photocleavage activity, photocytotoxicity and cellular localization in HeLa and MCF-7 cancer cells of these complexes were studied. Acetylacetonate (acac) complexes Cu(Fc-aa)(acac)] (4-6) were prepared and used as controls. The chemical nuclease inactive complexes showed efficient pUC19 DNA cleavage activity in visible light. Complexes 1-3 showed high photocytotoxicity with low dark toxicity thus giving remarkable photodynamic effect. FACScan analysis showed apoptosis of the cancer cells. Fluorescence microscopic studies revealed primarily cytosolic localization of the complexes. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current-potential relationships are derived for small-amplitude periodic inputs for linear electrochemical systems using a Fourier synthesis procedure. Specific results have been obtained for a triangular potential waveform for two simple model systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstaract is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of copper ammonium oxalate dihydrate (space group P1̃) has been derived from a refinement of the two-dimensional (hk0) and (0kl) x-ray data using the atomic coordinateis of the isomorphous salt CuK 2(C2O4)2.2H2O as the starting point of the analysis. In contrast to the chromium complexes of oxalic acid the C-C bonds in both the two nonequivalent oxalate ions in the unit cell are single bonds (1.58 and 1.61 Å) consistent with the conclusion of Jeffrey and Parry that the carboxyl groups of the oxalate ion are separated by a pure a bond with little or no π conjugation across the molecule. Both the oxalate ions are slightly nonplanar. The copper ions occupy the special positions (0, 0, 0) and 0, 1/2, 0) and their coordination is of the distorted octahedral type with four nearest oxygen neighbors ( ≃ 2 Å) at the corners of a square and two more distant atoms along the octahedral bond direction. The environment of the NH4+ ions consists of eight nearest oxygen atoms at a mean distance of 3 Å.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper(II) hydrazine carboxylate monohydrate, Cu(N2H3COO)2·H2O and chromium (II, III) hydrazine carboxylate hydrates, Cu(N2H3COO)2·H2O and Cu(N2H3COO)2·3H2O have been prepared and characterised by chemical analysis, IR, visible spectra and magnetic measurements. Thermal analysis of the copper complex yields a mixture of copper metal and copper oxide. Chromium complexes on thermal decomposition yield Cr2O3 as residue. Decomposition of chromium(HI) complex under hydrothermal conditions yield CrOOH, a precursor to CrO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new neutral copper azido polymers, Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(8)(L-2)(2)](n) (2), Cu-4(N-3)(8)(L-3)(2)](n) (3), and Cu-9(N-3)(18)(L-4)(4)](n) (4) L1-4 are formed in situ by reacting pyridine-2-carboxaldehyde with 22-(methylamino)ethyl]pyridine (mapy, L-1), N,N-dimethylethylenediamine (N,N-dmen, L-2), N,N-diethylethylenediamine (N,N-deen, L-3), and N,N,2,2-tetramethylpropanediamine (N,N,2,2-tmpn, L-4)], have been synthesized by using 0.5 mol equiv of the chelating tridentate ligands with Cu-(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single-crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu-4(II) building blocks. The overall structure of 3 is two-dimensional, while the other three complexes are one-dimensional in nature. Complex 1 represents a unique example containing hemiaminal ether arrested by copper(R). Complexes 1 and 2 have a rare bridging azido pathway: both end-on and end-to-end bridging azides between a pair of Cu-II centers. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all four complexes. Density functional theory calculations (B3LYP functional) have been performed on complexes 1-3 to provide a qualitative theoretical interpretation of their overall ferromagnetic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same nuclearities have very similar or even almost identical basic structures. However, the way these building units are joined together (by the azido bridges) to form the overall extended structures differ almost in every case. The complexes having the Cu-6 core are particularly interesting from a structural point of view. Although they have almost identical basic structures, some of them are extended in three dimensions, but two of them are extended in two dimensions by two different bridging networks. In the complexes having linear Cu-4 basic units, we find that using similar ligands does not always give the same bridging networks even within the basic building structures. These complexes have also enriched the field of molecular magnetism. One of the complexes with a Cu-3 building unit has provided us with the opportunity to study the competing behavior of two different kinds of magnetic exchange mechanism (ferromagnetic and antiferromagnetic) acting simultaneously between two metal ions. Through density functional theory calculations, we showed how they work independently and their additive nature to produce the overall effect. The exciting methodology for the generation of copper(II) polyclusters presented in this Account will provide the opportunity to explore analogous serendipitous assembly of diverse structures with interesting magnetic behavior using other transition metal ions having more than one unpaired electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of models for ``metal-enzyme-substrate'' interaction has been a proactive area of research owing to its biological and pharmacological importance. In this regard the ternary copper uracil complex with 1,10-phenanthroline represents metal-enzyme-substrate system for DNA binding enzymes. The synthesis of the complex, followed by slow evaporation of the reaction mixture forms two concomitant solvatomorph crystals viz., {Cu(phen)(mu-ura)(H2O)](n)center dot H2O (1a)} and {Cu(phen)(mu-ura)(H2O)](n)center dot CH3OH (1b)}. Both complexes are structurally characterized, while elemental analysis, IR and EPR spectra were recorded for 1b (major product). In both complexes, uracil coordinates uniquely via N1 and N3 nitrogen atom acting as a bidentate bridging ligand forming a 1-D polymer. The two solvatomorphs were quantitatively analyzed for the differences with the aid of Hirshfeld surface analysis. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray absorpion near edge structure (xanes) of copper compounds with copper in 1+, 2+ and 3+ states has been studied. Extended x-ray absorption fine structure (exafs) has been employed to determine bond distances and coordination numbers in several model copper compounds. Employing bothxanes andexafs, the structure of the copper complex formed by the micro-organismPseudomonas aeruginosa has been shown to be square-planar with the Cu-O distance close to that in cupric glucuronates and cupric acetylacetonate.exafs has been shown to be useful for studying metal-metal bonds in copper carboxylates.