267 resultados para Crystallographic structure


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A theoretical conformational analysis of fenamates, which are N-arylated derivatives of anthranilic acid or 2-aminonicotinic acid with different substituents on the aryl (phenyl) group, is reported. The analysis of these analgesics, which are believed to act through the inhibition of prostaglandin biosynthesis, was carried out using semi-empirical potential functions. The results and available crystallographic observations have been critically examined in terms of their relevance to drug action. Crystallographic studies of these drugs and their complexes have revealed that the fenamate molecules share a striking invariant feature, namely, the sixmembered ring bearing the carboxyl group is coplanar with the carboxyl group and the bridging imino group,the coplanarity being stabilized by resonance interactions and an internal hydrogen bond between the imino and carboxyl groups. The results of the theoretical analysis provide a conformational rationale for the observed invariant coplanarity. The second sixmembered ring, which provides hydrophobicity in a substantial part of the molecule, has limited conformational flexibility in meclofenamic, mefenamic and flufenamic acids. Comparison of the conformational energy maps of these acids shows that they could all assume the same conformation when bound to the relevant enzyme. The present study provides a structural explanation for the difference in the activity of niflumic acid, which can assume a conformation in which the whole molecule is nearly planar. The main role of the carboxyl group appears to be to provide a site for intermolecular interactions in addition to helping in stabilizing the invariant coplanar feature and providing hydrophilicity at one end of the molecule. The fenamates thus provide a good example of conformation- dependent molecular asymmetry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure of [Cu4L2(bipy)4(µ3-OH)2][ClO4]4 containing a Vitamin B6 ligand, pyridoxine (5-hydroxy-6-methylpyridine-3,4-dimethanol, HL), and 2,2′-bipyridine (bipy) has been determined by single-crystal X-ray analysis. This is the first report on a copper(II) complex having a ‘stepped-cubane’ structure. The compound crystallizes in the triclinic space group P[1 with combining macron](Z= 1) with a= 11.015(3), b= 11.902(1), c= 13.142(2)Å, α= 105.07(1), β= 102.22(1) and γ= 99.12(1)°; R= 0.054). The co-ordination geometry around each copper is trigonally distorted square pyramidal. Two of the basal sites are occupied by bipyridyl nitrogens in a bidentate fashion. The remaining basal positions for Cu(1) are filled by a phenolic oxygen and a 4-hydroxymethyl oxygen of the L moiety, whereas for Cu(2) they are occupied by two µ3-OH oxygens. The axial sites are occupied by a µ3-OH oxygen and the 4-hydroxymethyl oxygen of the same pyridoxine for Cu(1) and Cu(2), respectively. Both the bridging nature of the 4-hydroxymethyl oxygen of the L moiety and the unsymmetrical bridging nature of the µ3-OH groups with axial–equatorial bridging are novel features. The structure is discussed in relation to stepped-cubane structures reported in the literature. A comparative study is also made with µ3-hydroxo-bridged copper(II) complexes. Both the plasticity effect of CuII and the stacking interactions between the various rings appear to be important in stabilizing this unusual structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gelonin is a single chain ribosome inactivating protein (RIP) with potential application in the treatment of cancer and AIDS. Diffraction quality crystals grown using PEG3350, belong to the space group P2(1), with it a = 49.4 Angstrom b = 44.9 Angstrom, c = 137.4 Angstrom and beta = 98.4 degrees, and contain two molecules in the asymmetric unit. Diffraction data collected to 1.8 Angstrom resolution has a R(m) value of 7.3%. Structure of gelonin has been solved by the molecular replacement method, using ricin A chain as the search model. Crystallographic refinement using X-PLOR resulted in a model for which the r.m.s deviations from ideal bond lengths and bond angles are 0.012 Angstrom and 2.7 degrees, respectively The final R-factor is 18.4% for 39,806 reflections for which I > 1.0 sigma(I).The C-alpha atoms of the two molecules in the asymmetric unit superpose to within 0.38 Angstrom for 247 atom pairs. The overall fold of gelonin is similar to that of other RIPs such as ricin A chain and alpha-momorcharin, the r.m.s.d. for C-alpha superpositions being 1.3 and 1.4 Angstrom, respectively The-catalytic residues (Glu166, Arg169 and Tyr113) in the active site form a hydrogen bond scheme similar to that observed in other RIPs. The conformation of Tyr74 in the active site, however, is significantly different from that in alpha-momorcharin. Three well defined water molecules are located in the active site cavity and one of them, X319, superposes to within 0.2 Angstrom of a corresponding water molecule in the structure of alpha-momorcharin. Any of the three could be the substrate water molecule in the hydrolysis reaction catalysed by gelonin.Difference electron density for a N-linked sugar moiety has been observed near only one of the two potential glycosylation sites in the sequence. The amino acid at position 239 has been established as Lys by calculation of omit electron density maps.The two cysteine residues in the sequence, Cys44 and Cys50, form a disulphide bond, and are therefore not available for disulphide conjugation with antibodies. Based on the structure, the region of the molecule that is involved in intradimer interactions is suggested to be suitable for introducing a Cys residue for purposes of conjugation with an antibody to produce useful immunotoxins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jacalin and artocarpin, the two lectins from jackfruit (Artocarpus integrifolia) seeds, have different physicochemical properties and carbohydrate-binding specificities. However, comparison of the partial amino-acid sequence of artocarpin with the known sequence of jacalin indicates close to 50% sequence identity. Artocarpin crystallizes in two forms, both monoclinic P2(1), with one and two tetramic molecules, respectively, in the asymmetric units of form I (a = 69.9, b = 73.7, c = 60.6 Angstrom and beta = 95.1 degrees) and form II (a = 87.6, b = 72.2, c = 92.6 Angstrom and beta = 101.1 degrees). Both the crystal structures have been solved by the molecular replacement method using the known structure of jacalin as the search model and ope of them partially refined, confirming that the two lectins are indeed homologous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of Pb3BiV3O12 was solved using single-crystal X-ray diffraction technique. The compound crystallizes in the cubic system View the MathML source (No. 220) with eulytite structure with a = 10.7490(7) Å, V = 1241.95(14) Å3 and Z = 4. The final R1 value of 0.0198 (wR2=0.0384) was achieved for 359 independent reflections during the structure refinement. The Pb2+ and Bi3+ cations occupy the special position (16c) while the oxygen anions occupy the general position (48e) in the crystal structure. Unlike many other eulytite compounds, all the crystallographic positions are fully occupied. The structure consists of edge-shared Pb/Bi octahedra linked at the corners to independent [VO4]3− tetrahedra units, generating a eulytite-type network in the crystal lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From structural data of several crystal structure analyses of push-pull ethylenes it is found that C=C bond lengths in this class of molecules are significantly longer than the value for this bond in ethylene. With powerful donors and acceptors such as -NMe2 and -COOMe groups respectively, the C=C bond length is as long as 1.460 å. Correlations are observed between (i) C=C bond lengths and the twist angles about the C=C bond and (ii) C=C bond lengths and the torsional barrier measured by thednmr technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

M r = 188.22, monoclinic, P21/n, a = 6.219 (2), b= 10.508 (2), c=7.339 (1)A, t= 107.64 (2) °, V= 457 ,/k 3, Z = 2, D m - - 1.360 (3), D x = 1.366 (2)Mgm -3, ~,(MoKa) = 0.7107/~, #= 0.053 mm -I, F(000) = 200, T= 293 K. Final R = 5.8% for 614 significant reflections. The molecule, which does not possess a centre of symmetry, occupies a crystallographic centre of symmetry because of the statistical enantiomeric and rotational disorder. Latticeenergy calculations, based on van der Waals attractive and repulsive potentials, clearly show minima at the observed disordered positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complexation of alkali and alkaline earth metal ions with crown ethers is well known (1) and chemical and crystallographic studies have been carried out for number of complexes (2,3). The interaction of the metal with the crown ether depends on the nature of the cation and particularly on the basicity of the anion (4) , In this paper we report the crystal and molecular structure of a lithium picrate complex of benzo-15-crown-5, the first x-ray crystallographic study of a lithlum-crown system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The controversy with regard to the structures of the closely related polyisoprenylated phenolic compounds, garcinol, isogarcinol, camboginol, cambogin, xanthochymol and isoxanthochymol is cleared by X-ray crystallographic analysis of the naturally occurring isogarcinol. The unusual UV spectral characteristics of the chromophore of isogarcinol are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RECENT crystallographic studies of the dinucleosides ApU (ref. 1) and GpC (ref. 2) have given experimental proof for the base pairing arrangement proposed by Watson and Crick for the DNA double helix3. Another striking feature of this structure relates to the torsional angle about the C5'-C4' bond in the phosphate−sugar backbone chain. In the Crick and Watson model4, this conformation is gauche−trans (GT). Crystal structures of 5'-nucleotides, dinucleosides and dinucleotides so far studied, however, have shown only the gauche−gauche (GG) conformation about this bond. The GG conformer is also the only one found in the refined models of the proposed structure of the double helical nucleic acids and polynucleotides5−7. The only nucleotide with a GT conformation is 6-azauridine-5'-phosphate8 which is not a normal monomer unit of nucleic acids. It is also reported that 5'-dGMP assumes preferentially GT conformation in solution9.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RECENT crystallographic studies of the dinucleosides ApU (ref. 1) and GpC (ref. 2) have given experimental proof for the base pairing arrangement proposed by Watson and Crick for the DNA double helix3. Another striking feature of this structure relates to the torsional angle about the C5'-C4' bond in the phosphate−sugar backbone chain. In the Crick and Watson model4, this conformation is gauche−trans (GT). Crystal structures of 5'-nucleotides, dinucleosides and dinucleotides so far studied, however, have shown only the gauche−gauche (GG) conformation about this bond. The GG conformer is also the only one found in the refined models of the proposed structure of the double helical nucleic acids and polynucleotides5−7. The only nucleotide with a GT conformation is 6-azauridine-5'-phosphate8 which is not a normal monomer unit of nucleic acids. It is also reported that 5'-dGMP assumes preferentially GT conformation in solution9.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MANY cyclic peptides have interesting biological functions and the details of their molecular structure and conformation have been the subject of extensive investigations. Cyclic dipeptides such as diketopiperazine have been synthesised and shown to occur with the peptide units in the cis configuration1,2. In the case of a tripeptide, cyclisation can take place only if all three units are in the cis configuration3. In cyclic peptides with four units also, cis peptides are found4,5. As the number of the peptide units increases, the more stable trans configuration is generally more common6,7. We report here the main results of our X-ray crystallographic investigations of the cyclic tripeptides L-Pro-L-Pro-L-Pro and L-Pro-L-Pro-L-Hyp (hereafter called CTP 1 and CTP 2, respectively). CTP 1 was synthesised by Rothe et al. 8 and its derivatives have been prepared by Blout and his collaborators9.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed crystallographic investigation of N-methylacetamide complexes of Li, Na, K, Mg and Ca has been made in view of its importance in the coordination chemistry and biochemistry of alkali and alkaline earth metals. The metal ions bind to the amide oxygen causing an increase in the carbonyl distance and a proportionate decrease in the central C-N bond distance. The decrease in the central C-N distance is accompanied by an increase in the distance of the adjacent C-C bond and a decrease in the adjacent C-N bond distance. The metal ion generally deviates from the direction of the lone pair of the carbonyl oxygen and also from the plane of the peptide, the out-of-plane deviation varying with the ionic potential of the cation. The metal-oxygen distance in alkali and alkaline earth metal complexes of a given coordination number also varies with the ionic potential of the cation, as does the strength of binding of the cations to the amide. The amide molecules are essentially planar in these complexes, as expected from the increased bond order of the central C-N bond. The NH bonds of the amide are generally hydrogen bonded to anions. The structures of the amide complexes are compared with those of other oxygen donor complexes of alkali and alkaline earth metals. The structural study described here also provides a basis for the interpretation of results from spectroscopic and theoretical investigations of the interaction of alkali and alkaline earth metal cations with amides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Ni(NCS)2(CHsN3S)2], Mr = 356.7, monoclinic, P21/c , a = 5-297 (1), b = 7.869 (1), c - 16-078 (2) A,/3 = 91.53 (1) °, V-= 669.9 A 3, Z= 2, Om = 1"76, Dx = 1"771 g cm -3, A(Mo Ka) = 0-71069 ]k, /.~ = 19"9 cm-l, F(000) = 364, T = 295 K, final R = 0.026 for 1576 significant [F > 10g(F)] reflections. The complex lies on a crystallographic centre of symmetry. The Ni atom is octahedrally coordinated by two thiocyanates (through N atoms) and by two thiosemicarbazide molecules (through hydrazinic N and S atoms). The crystal structure is stabilized by N--H...S hydrogen bonds. Early work on this structure [Garaj & Dunaj-Jurco (1968). Chem. Commun. p. 518] used photographic data and was refined to R = 0-13 for 512 reflections.