197 resultados para Critical Zone Observatory
Resumo:
The garnet-kyanite-staurolite and garnet-biotite-staurolite gneisses were collected from a locality within Lukung area that belongs to the Pangong metamorphic complex in Shyok valley, Ladakh Himalaya. The kyanite-free samples have garnet and staurolite in equilibrium, where garnets show euhedral texture and have flat compositional profile. On the other hand, the kyanite-bearing sample shows equilibrium assemblage of garnet-kyanite-staurolite along with muscovite and biotite. In this case, garnet has an inclusion rich core with a distinct grain boundary, which was later overgrown by inclusion free euhedral garnet. Garnet cores are rich in Mn and Ca, while the rims are poor in Mn and rich in Fe and Mg, suggesting two distinct generations of growth. However, the compositional profiles and textural signature of garnets suggests the same stage of P -T evolution for the formation of the inclusion free euhedral garnets in the kyanite-free gneisses and the inclusion free euhedral garnet rims in the kyanite-bearing gneiss. Muscovites from the four samples have consistent K-Ar ages, suggesting the cooling age (∼ 10 Ma) of the gneisses. These ages make a constraint on the timing of the youngest post-collision metamorphic event that may be closely related to an activation of the Karakoram fault in Pangong metamorphic complex.
Resumo:
Recent work of Jones et al. giving the long-range behaviour of the pair correlation function is used to confirm that the critical ratio Pc/nckBTc = 1/2 in the Born-Green theory. This deviates from experimental results on simple insulating liquids by more than the predictions of the van der Waals equation of state. A brief discussion of conditions for thermodynamic consistency, which the Born-Green theory violates, is then given. Finally, the approach of the Ornstein-Zernike correlation function to its critical point behaviour is discussed within the Born-Green theory.
Resumo:
An investigation is presented of the daily variation of the maximum cloud zone (MCZ) and the 7W mb trough in the Northern Hemisphere over the Indian longitudes 70–90°E during April–October for 1973–77. It is found that during June–September there are two favorable locations for a MCZ over these longitudes–on a majority of days the MCZ is present in the monsoon zone north of 15°N, and often a secondary MCZ occurs in the equatorial region (0–10°N). The monsoon MCZ gets established by northward movement of the MCZ occurring over the equatorial Indian ocean in April and May. The secondary MCZ appears intermittently, and is characterized by long spells of persistence only when the monsoon MCZ is absent. In each of the seasons studied, the MCZ temporarily disappeared from the mean summer monsoon location (15–28°N) about four weeks after it was established near the beginning of July. It is reestablished by the northward movement of the secondary MCZ, which becomes active during the absence of the monsoon MCZ, in a manner strikingly similar to that observed in the spring to summer transition. A break in monsoon conditions prevails just prior to the temporary disappearance of the monsoon MCZ. Thus we conclude that the monsoon MCZ cannot survive for longer than a month without reestablishment by the secondary MCZ. Possible underlying mechanisms are also discussed.
Resumo:
The low-frequency (5–100 kHz) dielectric constant epsilon (Porson) has been measured in the temperature range 7 × 10−5 < t = (T − Tc)/Tc < 8 × 10−2. Near Tc an exponent ≈0.11 characterizes the power law behaviour of Image consistent with the theoretically predicted t−α singularity. However, over the full range of t an exponent ≈0.35 is obtained.
Resumo:
A generalized Ginzburg-Landau approach is used to study the nonmonotonic temperature dependence of the upper critical field H c 2(T) in antiferromagnetic superconductors RE(Mo)6S8; RE = Dy, Tb, Gd. It is found that electrodynamic effects incorporated through screening and indirect coupling between the staggered magnetization M Q (T) and superconducting order parameter psgr cannot explain the observed nonmonotonicity. This suggests that the direct coupling between the two order parameters should be considered to understand the experimental results, a finding which is consistent with recent microscopic calculations.
Resumo:
The system CS2 + CH3NO2 shows β=0.315±0.004 over 10-6<ε=|T-Tc| / Tc<2�10-1 with no indication of a classical value ½ even far away from Tc. The diameter shows a curvature and is of the form �c+b ε+fε7 / 8exp(-gεh).
Resumo:
Electrical resistance measurements are reported on the binary liquid mixtures CS2 + CH3CN and CS2 + CH3NO2 with special reference to the critical region. Impurity conduction seems to be the dominant mechanism for charge transport. For the liquid mixture filled at the critical composition, the resistance of the system aboveT c follows the relationR=R c−A(T−T c) b withb=0·6±0·1. BelowT c the conductivities of the two phases obey a relation σ2−σ1=B(T c−T)β with β=0·34±0·02, the exponent of the transport coefficient being the same as the exponent of the order parameter, an equilibrium property.
Resumo:
The heat capacity Cp of the binary liquid system CS2 + CH3CN has been studied. This system has an upper critical solution temperature To ≈ 323.4 K and a critical mole fraction of CS2xo ≈ 0.5920. Measurements were made both for mixtures close to and far away from the critical region. The heat capacity of the mixture with x = xo exhibits a symmetric logarithmic anomaly around Tc, which is apparently preserved even for compositions in the immediate vicinity of xc. For compositions far away from xc, only a normal rise in Cp over the covered temperature range is observed.
Resumo:
The shear difference method which is commonly used for the separation of normal stresses using photoelastic techniques depends on the step-by-step integration of one of the differential equations of equilibrium. It is assumed that the isoclinic and the isochromatic parameters measured by the conventional methods pertain to the state of stress at the midpoint of the light path. In practice, a slice thin enough for the above assumption to be true and at the same time thick enough to give differences in the shear-stress values over the thickness is necessary. The paper discusses the errors introduced in the isoclinic and isochromatic values by the conventional methods neglecting the variation of stresses along the light path. It is shown that while the error introduced in the measurement of the isochromatic parameter may not be serious, the error caused in the isoclinic measurement may lead to serious errors. Since the shear-difference method involves step-by-step integration the error introduced will be of a cumulative nature.
Resumo:
For five binary liquid systems CS2+CH3CN, CS2+CH3NO2, CS2+(CH3CO)2O, C6H12+(CH3CO)2O, n-C7H16+(CH3CO)2O, the electrical resistance has been measured near the critical solution temperatures. The behaviour is universal. Below Tc, the conductivities of the two phases follow σ1−σ2 β, where = T−Tc Tc with β≈0.35. In the one phase region with b≈0.35±0.1 and is positive in some cases and negative in others.
Resumo:
The system CS2 + CH3NO2 shows β=0.315±0.004 over 10-6<ε=|T-Tc| / Tc<2-10-1 with no indication of a classical value ½ even far away from Tc. The diameter shows a curvature and is of the form - c+b ε+fε7 / 8exp(-gεh).
Resumo:
The coexistence curve of the binary liquid mixture n-heptane-acetic anhydride has been determined by the observation of the transition temperatures of 76 samples over the range of compositions. The functional form of the difference in order parameter, in terms of either the mole fraction or the volume fraction, is consistent with theoretical predictions invoking the concept of universality at critical points. The average value of the order parameter, the diameter of the coexistence curve, shows an anomaly which can be described by either an exponent 1 - a, as predicted by various theories (where a is the critical exponent of the specific heat), or by an exponent 20 (where P is the coexistence curve exponent), as expected when the order parameter used is not the one the diameter of which diverges asymptotically as 1 - a.
Resumo:
Gadolinium strontium manganite single crystals of the composition Gd0.5Sr0.5MnO3 were grown using the optical float zone method. We report here the magnetic and magnetotransport properties of these crystals. A large magnetoresistance similar to 10(9)% was observed at 45 K under the application of a 110 kOe field. We have observed notable thermomagnetic anomalies such as open hysteresis loops across the broadened first-order transition between the charge order insulator and the ferromagnetic metallic phase while traversing the magnetic field-temperature (H-T) plane isothermally or isomagnetically. In order to discern the cause of these observed anomalies, the H-T phase diagram for Gd0.5Sr0.5MnO3 is formulated using the magnetization-field (M-H), magnetization-temperature (M-T) and resistance-temperature (R-T) measurements. The temperature dependence of the critical field (i.e. H-up, the field required for transformation to the ferromagnetic metallic phase) is non-monotonic. We note that the non-monotonic variation of the supercooling limit is anomalous according to the classical concepts of the first-order phase transition. Accordingly, H-up values below similar to 20 K are unsuitable to represent the supercooling limit. It is possible that the nature of the metastable states responsible for the observed open hysteresis loops is different from that of the supercooled ones.