62 resultados para Cosmetic filler


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tn the current set of investigations foam sandwich panels and some components of an aircraft comprising of two layer Glass Fiber Reinforced Plastic(GFRP) face sheets of thickness 1mm each with polyurethene foam as filler of thickness 8mm were examined for detection of debonds and defects. Known defects were introduced in the panels in the form of teflon insert, full foam removal,half foam removal and edge delamination by inserting a teflon and removing it after curing. Two such panels were subjected to acoustic impact and analysis was carried out in both time and frequency domains. These panels were ultrasonically scanned to obtain C-SCAN images as reference to evaluate Acoustic Impact Test (AIT) results. In addition both Fokker bond testing and AIT(woodpecker) were carried out on the same panels and also some critical joints on the actual component. The results obtained from these tests are presented and discussed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of hard and refractory alumina additions on the mechanical properties of polymer in general and wear behavior in particular is not well studied. In this work, therefore, the changes in wear behavior of epoxy resin due to the additions of alumina powders have been looked into. Using a pin-on-disc set up, dry sliding wear tests were done on both filled (4, 8, & 11 wt. % alumina) and unfilled samples. A sliding velocity of 0.83 m/sec. and a sliding distance of 2 km were employed for the study. Load range used varied from 9.8 N to about 29 N. The experiments point to an increased resistance to wear with an increased presence of filler in the matrix. Further, higher loads result in larger loss of material irrespective of the filler level in the composite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The moisture absorption and changes in compression strengths in glass-epoxy (G-E composites without and with discrete quantities of graphite powders introduced into the resin mix prior to its spreading on specific glass fabric (layers) during the lay-up (stacking) sequence forms the subject matter of this report. The results point to higher moisture absorption for graphite bearing specimens. The strengths of graphite-free coupons show a continuous decrease, while the filler bearing ones show an initial rise followed by a drop for larger exposure times. Scanning Fractographic features were examined for an understanding of the process. The observations were explained invoking the effect of matrix plasticizing and the role of interfacial regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compressive strength of epoxy with "free-inforcement" flyash without any prior separation is studied. It is observed that the increase in filler volume fraction beyond 10% brings about a reduction in the compressive strength. Increasing adhesion factor, determined relative to unfilled matrix, implied an alleviation in the interfacial adhesion due to dewetting, especially at the surfaces of larger particles and at higher filler concentrations. Such deductions were verified by examining the surface features of compression tested samples in Scanning Electron Microscope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treeing in polyethylene based nanocomposite samples as well as unfilled polyethylene samples were studied using 50Hz ac voltage. The tree inception voltage was observed for different types of samples. The tree initiation time as well as the tree growth patterns at a fixed ac voltage have also been studied. The results show that there is an improvement in tree inception voltage with nano filler loading in polyethylene. Different tree growth patterns for both the unfilled polyethylene and the polyethylene nanocomposites have been observed. A slower tree growth was observed in polyethylene nanocomposites. The partial discharge characteristics of unfilled and nano filled polyethylene samples during the electrical tree growth period was also studied. Decrease in PD magnitude as well as in the number of pd pulses with electrical tree growth duration in polyethylene nanocomposites has also been observed. The possible reasons for the improvement in electrical tree growth and PD resistance with the addition of nano fillers are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of 0.5 mm, thick epoxy alumina nanocomposites with different filler concentrations of 0.1, 1 and 5wt%. The experiments were performed as per the ASTM D 149 standard. It was observed that the ac breakdown strength was marginally lower up to 1wt% filler concentration and then increased at 5wt% filler concentration as compared to the unfilled epoxy. The Weibull shape parameter (β) increased with the addition of nanoparticles to epoxy. The dependence of thickness on the ac breakdown strength was also analyzed by conducting experiments on 1mm and 3mm thick unfilled epoxy and epoxy alumina nanocomposites of 1wt% and 5wt% filler concentrations. The DSC analysis was done to understand the material properties at the filler resin interface in order to study the effect of the filler concentration and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate composites based on polymer matrices generally contain fillers, especially those that are abundantly available and are cheaper. The inclusion of these, besides improving the properties, makes the system costwise viable, In the present study, fly ash was tried as a filler in epoxy. The filler particle surfaces were modified using three chemical surface treatment techniques in order to elicit the effect of adhesion at the interface on the mechanical properties of these composites. The compatibilizing of the filler with the use of a silane coupling agent yielded the best compression strength values. Scanning Electron Microscopy (SEM) has been used to characterize and supplement the mechanical test data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate reinforcements for polymers are selected with dual objective of improving composite properties and save on the total cost of the system. In the present study fly ash, an industrial waste with good properties is used as filler in epoxy and the compressive properties of such composites are studied. Particle surfaces are treated chemically using a silane-coupling agent to improve the compatibility with the matrix. The compressive properties of these are compared with those made of untreated fly ash particulates. Furthermore properties of fly ash composites with two different average particle sizes are first compared between themselves and then with those made using the as-received bimodal nature of particle size distribution. Microscopic observations of compression tested samples revealed a better adherence of the particles with the matrix in case of treated particles and regards the size effect the composites with lower average particle size showed improved strength at higher filler contents. Experimental values of strengths and modulii are compared with some of the theoretical models for composite properties. (C) 2002 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two types of cationic cholesteryl amphiphiles, one where the headgroup is attached to the steroid by an ester linkage and the second by an ether linkage, were synthesized. A third type of cholesteryl lipid bearing an oligoethylene glycol segment was also prepared. Each of these synthetic lipids generated vesicle-like aggregates with closed inner aqueous compartments from their aqueous suspensions. We examined their interaction with L-α-dipalmitoyl phosphatidylcholine (DPPC) membranes using fluorescence anisotropy, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). When included in membranes, the synthetic cholesteryl lipids were found to quench the chain motion of the acyl chains of DPPC. This suggests that these cationic cholesteryl derivatives act as filler molecules despite modification at the headgroup level from the molecular structure of natural cholesterol. Careful analyses of DSC and fluorescence anisotropy data suggest that the nature of perturbation induced by each of these cationic cholesterol derivatives is dependent on the details of their molecular structure and provides significant information on the nature of interaction of these derivatives with phospholipid molecules. In general, amphiphiles that support structured water at the interfacial region tend to rigidify the fluid phase more than others. Importantly, these cholesteryl amphiphiles behave less like cholesterol in that their incorporation in DPPC not only abolishes the phase transition but also depresses the phase transition temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer composites are generally filled with either fibrous or particulate materials to improve the mechanical properties. In choosing the fillers one looks for materials that are inexpensive and available in abundance, in order to realize a cost reduction also. Also, often these fibres/fillers are treated to improve the matrix adhesion and thereby mechanical properties. The present study is focussed on the influence of water ingression in such filler-modified composites and the attendant changes in the compressive properties. The changes in property effected following exposure to aqueous media and the influence interface modification has on the scenario is emphasized in the work. It is seen that for plain epoxy and fly ash filled systems the strengths are increased following exposure to aqueous media. The composites with surface-treated ash particles, on the other hand, record a drop in the values. Modulus values show are increased to varying degree in unfilled and filled systems. The study also includes a fractographic analysis of the tested samples with and without exposure to water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents the analysis of ultra wide band (UWB) filler designed using a symmetrical three parallel coupled line resonator in low temperature co-fired ceramic (LTCC) medium: The ground plane with an aperture incorporated in it improves the coupling. Based on circuit models, the designed UWB filter has been analyzed, and the results have been confirmed by experiments. The filter has been realized with Dupont LTCC tape DuPont 951 (that has dielectric constant of 7.8). Maximum insertion loss of the experimental filter is 1.5 dB. The group variation over the pass band of the filter is within 0.2 us. Dimensions of the experimental LTCC filter are 20 x 10 x 0.72 mm. (C) 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:2580-2583,2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26311

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-point bending behavior of sandwich beams made up of jute epoxy skins and piecewise linear functionally graded (FG) rubber core reinforced with fly ash filler is investigated. This work studies the influence of the parameters such as weight fraction of fly ash, core to thickness ratio, and orientation of jute on specific bending modulus and strength. The load displacement response of the sandwich is traced to evaluate the specific modulus and strength. FG core samples are prepared by using conventional casting technique and sandwich by hand layup. Presence of gradation is quantified experimentally. Results of bending test indicate that specific modulus and strength are primarily governed by filler content and core to sandwich thickness ratio. FG sandwiches with different gradation configurations (uniform, linear, and piecewise linear) are modeled using finite element analysis (ANSYS 5.4) to evaluate specific strength which is subsequently compared with the experimental results and the best gradation configuration is presented. POLYM. COMPOS., 32:1541-1551, 2011. (C) 2011 Society of Plastics Engineers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. The experiments were performed as per the ASTM D 149 standard on samples of thickness 0.5 mm, 1 mm and 3 mm in order to study the effect of thickness on the ac breakdown strength of epoxy nanocomposites. In the case of epoxy alumina nanocomposites it was observed that the ac breakdown strength was marginally lower for 0.1 wt% and 1 wt% filler loadings and then increased at 5 wt% filler loading as compared to the unfilled epoxy. The Weibull shape parameter (beta) increased with the addition of nanoparticles to epoxy as well as with the increasing sample thickness for all the filler loadings considered. DSC analysis was done to study the material properties at the filler resin interface in order to understand the effect of the filler loading and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites. It was also observed that the decrease in ac electric breakdown strength with an increase in sample thickness follows an inverse power-law dependence. In addition, the ac breakdown strength of epoxy silica nanocomposites have also been studied in order to understand the influence of the filler type on the breakdown strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A thermally stable and flexible composite has been synthesized by following a consecutive `two-step', solvent free route. Silicone polymer containing internal hydrides was used as a polymer matrix and mesoporous silica functionalized with allytrimethoxysiloxane was used as a filler material. In the second step, the composite preparation was carried out using the hydrosilylation reaction mediated by `Karastedt' platinum catalyst. The results of the studies suggest that the composites are thermally stable, hydrophobic and flexible and can be potentially used for encapsulating flexible electronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of a study on the effect of alumina nano-fillers on electrical tree growth in epoxy insulation. Treeing experiments were conducted at a fixed ac voltage of 15 kV, 50 Hz on unfilled epoxy samples as well as epoxy nanocomposites with different loadings of alumina nano-fillers. Time for tree inception as well as tree growth patterns were studied. The results show that there is a significant improvement in tree initiation time with the increase in nano-filler loading. Different tree growth patterns as well as slower tree growth with increasing filler loadings were observed in epoxy nanocomposites. The nature of the tree channel and the elemental composition of the material on the inner lining of the tree channels have been studied using SEM imaging and EDAX analysis respectively of the cut section of the tree channels. It has been shown that the type of bonding at the interface has an influence on the electrical tree growth pattern. The nature of the bonding at the interface between the epoxy and the nano-filler has been studied using FTIR spectrometry. Finally the influence of the interface on tree growth phenomena in nanocomposites has been explained by a physical model.