28 resultados para Corn and Brachiaria - Intercropping systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common and practical paradigm in cooperative communication systems is the use of a dynamically selected `best' relay to decode and forward information from a source to a destination. Such systems use two phases - a relay selection phase, in which the system uses transmission time and energy to select the best relay, and a data transmission phase, in which it uses the spatial diversity benefits of selection to transmit data. In this paper, we derive closed-form expressions for the overall throughput and energy consumption, and study the time and energy trade-off between the selection and data transmission phases. To this end, we analyze a baseline non-adaptive system and several adaptive systems that adapt the selection phase, relay transmission power, or transmission time. Our results show that while selection yields significant benefits, the selection phase's time and energy overhead can be significant. In fact, at the optimal point, the selection can be far from perfect, and depends on the number of relays and the mode of adaptation. The results also provide guidelines about the optimal system operating point for different modes of adaptation. The analysis also sheds new insights on the fast splitting-based algorithm considered in this paper for relay selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen transfer rate and the corresponding power requirement to operate the rotor are vital for design and scale-up of surface aerators. The aeration process can be analyzed in two ways such as batch and continuous systems. The process behaviors of batch and continuous flow systems are different from each other. The experimental and numerical results obtained through the batch systems cannot be relied on and applied for the designing of the continuous aeration tank. Based on the experimentation on batch and continuous type systems, the present work compares the performance of both the batch and continuous surface aeration systems in terms of their oxygen transfer capacity and power consumption. A simulation equation developed through experimentation has shown that continuous flow surface aeration systems are taking more energy than the batch systems. It has been found that batch systems are economical and better for the field application but not feasible where large quantity of wastewater is produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fully automated, versatile Temperature Programmed Desorption (TDP), Temperature Programmed Reaction (TPR) and Evolved Gas Analysis (EGA) system has been designed and fabricated. The system consists of a micro-reactor which can be evacuated to 10−6 torr and can be heated from 30 to 750°C at a rate of 5 to 30°C per minute. The gas evolved from the reactor is analysed by a quadrupole mass spectrometer (1–300 amu). Data on each of the mass scans and the temperature at a given time are acquired by a PC/AT system to generate thermograms. The functioning of the system is exemplified by the temperature programmed desorption (TPD) of oxygen from YBa2Cu3−xCoxO7 ± δ, catalytic ammonia oxidation to NO over YBa2Cu3O7−δ and anaerobic oxidation of methanol to CO2, CO and H2O over YBa2Cu3O7−δ (Y123) and PrBa2Cu3O7−δ (Pr123) systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information forms the basis of modern technology. To meet the ever-increasing demand for information, means have to be devised for a more efficient and better-equipped technology to intelligibly process data. Advances in photonics have made their impact on each of the four key applications in information processing, i.e., acquisition, transmission, storage and processing of information. The inherent advantages of ultrahigh bandwidth, high speed and low-loss transmission has already established fiber-optics as the backbone of communication technology. However, the optics to electronics inter-conversion at the transmitter and receiver ends severely limits both the speed and bit rate of lightwave communication systems. As the trend towards still faster and higher capacity systems continues, it has become increasingly necessary to perform more and more signal-processing operations in the optical domain itself, i.e., with all-optical components and devices that possess a high bandwidth and can perform parallel processing functions to eliminate the electronic bottleneck.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double-diffusive finger convection occurs in many natural processes.The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (R-rho) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (Ra-T) has been systematically varied from 7x10(3) to 7x10(8). Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as Ra-T-1/3. Velocity in the finger varies as Ra(T)1/3/R-rho. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a unified model to explain Quasi-Periodic Oscillation (QPO), particularly of high frequency, observed from black hole and neutron star systems globally. We consider accreting systems to be damped harmonic oscillators exhibiting epicyclic oscillations with higher-order nonlinear resonance to explain QPO. The resonance is expected to be driven by the disturbance from the compact object at its spin frequency. The model explains various properties parallelly for both types of the compact object. It describes QPOs successfully for ten different compact sources. Based on this, we predict the spin frequency of the neutron star Sco X-1 and specific angular momentum of black holes GRO J1655–40, XTE J1550–564, H1743–322, and GRS 1915+105.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the large anomalous Hall constants of mixed-valence and Kondo-lattice systems can be understood in terms of a simple resonant-level Fermi-liquid model. Splitting of a narrow, orbitally unquenched, spin-orbit split, f resonance in a magnetic field leads to strong skew scattering of band electrons. We interpret both the anomalous signs and the strong temperature dependence of Hall mobilities in CeCu2Si2, SmB6, and CePd3 in terms of this theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used phase field simulations to study the effect of misfit and interfacial curvature on diffusion-controlled growth of an isolated precipitate in a supersaturated matrix. Treating our simulations as computer experiments, we compare our simulation results with those based on the Zener–Frank and Laraia–Johnson–Voorhees theories for the growth of non-misfitting and misfitting precipitates, respectively. The agreement between simulations and the Zener–Frank theory is very good in one-dimensional systems. In two-dimensional systems with interfacial curvature (with and without misfit), we find good agreement between theory and simulations, but only at large supersaturations, where we find that the Gibbs–Thomson effect is less completely realized. At small supersaturations, the convergence of instantaneous growth coefficient in simulations towards its theoretical value could not be tracked to completion, because the diffusional field reached the system boundary. Also at small supersaturations, the elevation in precipitate composition matches well with the theoretically predicted Gibbs–Thomson effect in both misfitting and non-misfitting systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used the density matrix renormalization group (DMRG) method to study the linear and nonlinear optical responses of first generation nitrogen based dendrimers with donor acceptor groups. We have employed Pariser–Parr–Pople Hamiltonian to model the interacting pi electrons in these systems. Within the DMRG method we have used an innovative scheme to target excited states with large transition dipole to the ground state. This method reproduces exact optical gaps and polarization in systems where exact diagonalization of the Hamiltonian is possible. We have used a correction vector method which tacitly takes into account the contribution of all excited states, to obtain the ground state polarizibility, first hyperpolarizibility, and two photon absorption cross sections. We find that the lowest optical excitations as well as the lowest excited triplet states are localized. It is interesting to note that the first hyperpolarizibility saturates more rapidly with system size compared to linear polarizibility unlike that of linear polyenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A frequency-domain positivity condition is derived for linear time-varying operators in2and is used to develop2stability criteria for linear and nonlinear feedback systems. These criteria permit the use of a very general class of operators in2with nonstationary kernels, as multipliers. More specific results are obtained by using a first-order differential operator with a time-varying coefficient as multiplier. Finally, by employing periodic multipliers, improved stability criteria are derived for the nonlinear damped Mathieu equation with a forcing function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the application of vector spaces over Galois fields, for obtaining a formal description of a picture in the form of a very compact, non-redundant, unique syntactic code. Two different methods of encoding are described. Both these methods consist in identifying the given picture as a matrix (called picture matrix) over a finite field. In the first method, the eigenvalues and eigenvectors of this matrix are obtained. The eigenvector expansion theorem is then used to reconstruct the original matrix. If several of the eigenvalues happen to be zero this scheme results in a considerable compression. In the second method, the picture matrix is reduced to a primitive diagonal form (Hermite canonical form) by elementary row and column transformations. These sequences of elementary transformations constitute a unique and unambiguous syntactic code-called Hermite code—for reconstructing the picture from the primitive diagonal matrix. A good compression of the picture results, if the rank of the matrix is considerably lower than its order. An important aspect of this code is that it preserves the neighbourhood relations in the picture and the primitive remains invariant under translation, rotation, reflection, enlargement and replication. It is also possible to derive the codes for these transformed pictures from the Hermite code of the original picture by simple algebraic manipulation. This code will find extensive applications in picture compression, storage, retrieval, transmission and in designing pattern recognition and artificial intelligence systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a series of seeondary- and tertiary-amino-substituted diaryl diselenides were synthesized and studied for their glutathione peroxidase (GPx) like antioxidant activities with H2O2, cumene hydroperoxide, or tBuOOH as substrates and with PhSH or glutathione (GSH) as thiol cosubstrates. This study reveals that replacement of the tert-amino groups in benzylamine-based diselenides by sec-amino moieties drastically enhances the catalytic activities in both the aromatic thiol (PhSH) and GSH assay systems. Particularly, the N-propyl- and N-isopropylamino-substituted diselenides are 8-18 times more active than the corresponding N,N-dipropyl- and N,N-diisopropylamine-based compounds in all three peroxide systems when GSH is used as the thiol cosubstrate. Although the catalytic mechanism of sec-amino-substituted disclenides is similar to that of the tert-amine-based compounds, differences in the stability and reactivity of some of the key intermediates account for the differences in the GPx-like activities. it is observed that the sec-amino groups are better than the tert-amino moieties for generating the catalytically active selenols. This is due to the absence of any significant thiol-exchange reactions in the selenenyl sulfides derived from sec-amine-based diselenides. Furthermore, the seleninic acids (RSeO2H) derived from the sec-amine-based compounds are more stable toward further reactions with peroxides than their tert-amine-based analogues.