37 resultados para Concrete material and ORIGAMI (folding paper)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, buildings consume nearly half of the total energy produced, and consequently responsible for a large share of CO2 emissions. A building's life cycle energy (LCE) comprises its embodied energy (EE) and operational energy (OE). The building design, prevalent climatic conditions and occupant behaviour primarily determines its LCE. Thus, for the identification of appropriate emission-reduction strategies, studies into building LCE are crucial. While OE reflects the energy utilized in operating a, EE comprises the initial capital energy involved in its construction (material and burden associated with material consumption in buildings. Assessment of EE and OE in buildings is crucial towards identifying appropriate design and operational strategies for reduction of the building's life cycle energy. This paper discusses EE and OE assessment of a few residential buildings in different climatic locations in India. The study shows that share of OE and EE in LCE greatly depends upon the types of materials used in construction and extent of space conditioning adopted. In some cases EE can exceed life cycle OE. Buildings with reinforced concrete frame and monolithic reinforced concrete walls have very high EE. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SecB, a soluble cytosolic chaperone component of the Secexport pathway, binds to newly synthesized precursor proteins and prevents their premature aggregation and folding and subsequently targets them to the translocation machinery on the membrane. PreMBP, the precursor form of maltose binding protein, has a 26-residue signal sequence attached to the N-terminus of MBP and is a physiological substrate of SecB. We examine the effect of macromolecular crowding and SecB on the stability and refolding of denatured preMBP and MBP. PreMBP was less stable than MBP (ΔTm =7( 0.5 K) in both crowded and uncrowded solutions. Crowding did not cause any substantial changes in the thermal stability ofMBP(ΔTm=1(0.4 K) or preMBP (ΔTm=0(0.6 K), as observed in spectroscopically monitored thermal unfolding experiments. However, both MBP and preMBP were prone to aggregation while refolding under crowded conditions. In contrast to MBP aggregates, which were amorphous, preMBP aggregates form amyloid fibrils.Under uncrowded conditions, a molar excess of SecB was able to completely prevent aggregation and promote disaggregation of preformed aggregates of MBP. When a complex of the denatured protein and SecB was preformed, SecB could completely prevent aggregation and promote folding of MBP and preMBP even in crowded solution. Thus, in addition to maintaining substrates in an unfolded, export-competent conformation, SecB also suppresses the aggregation of its substrates in the crowded intracellular environment. SecB is also able to promote passive disaggregation of macroscopic aggregates of MBP in the absence of an energy source such as ATP or additional cofactors. These experiments also demonstrate that signal peptide can reatly influence protein stability and aggregation propensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spherical indentation strength of a lead zirconate titanate (PZT) piezoelectric ceramic was investigated under poled and unpoled conditions and with different electrical boundary conditions (arising through the use of insulating or conducting indenters). Experimental results show that the indentation strength of the poled PZT is higher than that of the unpoled PZT. The strength of a poled PZT under a conducting indenter is higher than that under an insulating indenter. Poling direction (with respect to the direction of indentation loading) did not significantly affect the strength of material. Complementary finite element analysis (FEA) of spherical indentation of an elastic, linearly coupled piezoelectric half-space is conducted for rationalizing the experimental observations. Simulations show marked dependency of the contact stress on the boundary conditions. In particular, contact stress redistribution in the Coupled problem leads to a change in the fracture initiation, from Hertzian cracking in the unpoled material to Subsurface damage initiation in poled PZT. These observations help explain the experimental ranking of strength the PZT in different material conditions or under different boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a switching theoretic algorithm for the folding of programmable logic arrays (PLA). The algorithm is valid for both column and row folding, although it has been presented considering only the simple column folding. The pairwise compatibility relations among all the pairs of the columns of the PLA are mapped into a square matrix, called the compatibility matrix of the PLA. A foldable compatibility matrix (FCM), a new concept introduced by the author, is then derived from the compatibility matrix. A new theorem called the folding theorem is then proved. The theorem states that the existence of an m by 2m FCM is both necessary and sufficient to fold 2m columns of the n column PLA (2m ≤ n). Once an FCM is obtained, the ordered pairs of foldable columns and the re-ordering of the rows are readily determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents the results of a computational modeling for damage identification process for an axial rod representing an end-bearing pile foundation with known damage and a simply supported beam representing a bridge girder. The paper proposes a methodology for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete axial rod and beam, idealized with distributed damage model. Identification of damage is from Equal_Eigen_value_change (Iso_Eigen_value_Change) contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. An experiment conducted on a free-free axially loaded reinforced concrete member and a flexural beam is shown as examples to prove the pros and cons of this method. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the problem of ignition and extinction has been formulated for the flow of a compressible fluid with Prandtl and Schmidt numbers taken as unity. In particular, the problems of (i) a jet impinging on a wall of combustible material and (ii) the opposed jet diffusion flame have been studied. In the wall jet case, three approximations in the momentum equation namely, (i) potential flow, (ii) viscous flow, (ii) viscous incompressible with k = 1 and (iii) Lees' approximation (taking pressure gradient terms zero) are studied. It is shown that the predictions of the mass flow rates at extinction are not very sensitive to the approximations made in the momentum equation. The effects of varying the wall temperature in the case (i) and the jet temperature in the case (ii) on the extinction speeds have been studied. The effects of varying the activation energy and the free stream oxidant concentration in case (ii), have also been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A creep resistant permanent mould cast Mg alloy MRI 230D was laser surface alloyed with Al and a mixture of Al and Al2O3 using pulsed Nd:YAG laser irradiation at four different scan speeds in order to improve the corrosion and wear resistance. The microstructure, corrosion and wear behavior of the laser surface alloyed material is reported in this manuscript. The coating comprised of a featureless microstructure with cellular-dendritic microstructure near the interface and exhibited good interfacial bonding. A few solidification cracks reaching down to substrate were also observed. The two step coating with Al followed by a mixture of Al and Al2O3 exhibited a slightly better corrosion resistance than the single step coating with Al. In the long run, however, corrosion resistance of both the coatings became comparable to the as-cast alloy. The corroded surface of the laser surface alloyed specimens revealed a highly localized corrosion. The laser surface alloyed specimens exhibited an improvement in wear resistance. The laser scan speed did not exhibit a monotonic trend either in corrosion or wear resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several methods are available for predicting flexural strength of steel fiber concrete composites. In these methods, direct tensile strength, split cylinder strength, and cube strength are the basic engineering parameters that must be determined to predict the flexural strength of such composites. Various simplified forms of stress distribution are used in each method to formulate the prediction equations for flexural strength. In this paper, existing methods are reviewed and compared, and a modified empirical approach is developed to predict the flexural strength of fiber concrete composites. The direct tensile strength of the composite is used as the basic parameter in this approach. Stress distribution is established from the findings of flexural tests conducted as part of this investigation on fiber concrete prisms. A comparative study of the test values of an earlier investigation on fiber concrete slabs and the computed values from existing methods, including the one proposed, is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of computing the level-crossings of an analog signal from samples measured on a uniform grid. Such a problem is important, for example, in multilevel analog-to-digital (A/D) converters. The first operation in such sampling modalities is a comparator, which gives rise to a bilevel waveform. Since bilevel signals are not bandlimited, measuring the level-crossing times exactly becomes impractical within the conventional framework of Shannon sampling. In this paper, we propose a novel sub-Nyquist sampling technique for making measurements on a uniform grid and thereby for exactly computing the level-crossing times from those samples. The computational complexity of the technique is low and comprises simple arithmetic operations. We also present a finite-rate-of-innovation sampling perspective of the proposed approach and also show how exponential splines fit in naturally into the proposed sampling framework. We also discuss some concrete practical applications of the sampling technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concrete is basically a heterogeneous material made up of ingredients with distinct physical and mechanical properties. As a result, the presence of interphases is inevitable. In the processing of concrete, fresh and hardened states are the two distinct stages. In the fresh state, the presence of inert constituents in the cement mortar matrix only dilutes the overall potential of concrete to flow. In the hardened state the synergetics play a dominant role in strength development. When the strength of coarse aggregate is far higher than the strength levels for which the matrix or concrete is processed, interphase bonding plays a dominant role on the strength. When the matrix strength is comparable to that of the aggregate strength, in contrast, the concrete strength is affected by the aggregate strength. Besides these aspects, the effects of the size and the surface texture of coarse aggregates have also been analysed. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution of fluorescence resonance energy transfer (FRET) efficiency between the two ends of a Lennard-Jones polymer chain both at equilibrium and during folding and unfolding has been calculated, for the first time, by Brownian dynamics simulations. The distribution of FRET efficiency becomes bimodal during folding of the extended state subsequent to a temperature quench, with the width of the distribution for the extended state broader than that for the folded state. The reverse process of unfolding subsequent to a upward temperature jump shows different characteristics. The distributions show significant viscosity dependence which can be tested against experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the concept, prototypes, and an optimal design method for a compliant mechanism kit as a parallel to the kits available for rigid-body mechanisms. The kit consists of flexible beams and connectors that can be easily hand-assembled using snap fits. It enables users, using their creativity and mechanics intuition, to quickly realize a compliant mechanism. The mechanisms assembled in this manner accurately capture the essential behavior of the topology, shape, size and material aspects and thereby can lead the way for a real compliant mechanism for practical use. Also described in this paper are the design of the connector to which flexible beams can be added in eight different directions; and prototyping of the spring steel connectors as well as beams using wire-cut electro discharge machining. It is noted in this paper that the concept of the kit also resolves a discrepancy in the finite element (FE) modeling of beam-based compliant mechanisms. The discrepancy arises when two or more beams are joining at one point and thus leading to increased stiffness. After resolving this discrepancy, this work extends the topology optimization to automatically generate designs that can be assembled with the kit. Thus, the kit and the accompanying analysis and optimal synthesis procedures comprise a self-contained educational as well as a research and pragmatic toolset for compliant mechanisms. The paper also illustrates how human creativity finds new ways of using the kit beyond the original intended use and how it is useful even for a novice to design compliant mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fly ash and silica fume are two pozzolans that have been widely used for improved concrete strength and durability. Silica fume displays a greater pozzolanic reactivity than fly ash primarily due to its finer particle size. The reactivity of fly ash can be improved by reducing its particle size distribution. This paper discusses the fresh and hardened properties of concrete made with an ultra-fine fly ash (UFFA) produced by air classification. Durability testing for chloride diffusivity, rapid chloride permeability, alkali-silica reaction (ASR), and sulfate attack was also conducted It was found that at a given workability and water content, concrete containing UFFA could be produced with only 50% of the high-range water-reducer dosage required for comparable silica fume concrete. Similar early strengths and durability measures as silica fume concrete were observed when a slightly higher dosage of UFFA was used with a small reduction (10%) in water content.