46 resultados para Computer simulation.
Resumo:
From a computer simulation of the 270 MHz 1H NMR spectra of hydroxyproline (Hyp) and its protected derivatives, precise values of ring vicinal coupling constants were obtained. These couplings were related to ring torsional angles, using a Karplus type analysis. From the NMR analysis it was observed that the pyrrolidine ring possesses a unique and highly homogeneous conformation (Cγ-exo form). Temperature dependence studies on protected dipeptides suggest that the pyrrolidine ring conformation is independent of backbone conformation. An unusual X-Hyp, β-turn was observed for Boc-Aib-Hyp-NHMe.
Resumo:
Color displays used in image processing systems consist of a refresh memory buffer storing digital image data which are converted into analog signals to display an image by driving the primary color channels (red, green, and blue) of a color television monitor. The color cathode ray tube (CRT) of the monitor is unable to reproduce colors exactly due to phosphor limitations, exponential luminance response of the tube to the applied signal, and limitations imposed by the digital-to-analog conversion. In this paper we describe some computer simulation studies (using the U*V*W* color space) carried out to measure these reproduction errors. Further, a procedure to correct for color reproduction error due to the exponential luminance response (gamma) of the picture tube is proposed, using a video-lookup-table and a higher resolution digital-to-analog converter. It is found, on the basis of computer simulation studies, that the proposed gamma correction scheme is effective and robust with respect to variations in the assumed value of the gamma.
Resumo:
The statistical minimum risk pattern recognition problem, when the classification costs are random variables of unknown statistics, is considered. Using medical diagnosis as a possible application, the problem of learning the optimal decision scheme is studied for a two-class twoaction case, as a first step. This reduces to the problem of learning the optimum threshold (for taking appropriate action) on the a posteriori probability of one class. A recursive procedure for updating an estimate of the threshold is proposed. The estimation procedure does not require the knowledge of actual class labels of the sample patterns in the design set. The adaptive scheme of using the present threshold estimate for taking action on the next sample is shown to converge, in probability, to the optimum. The results of a computer simulation study of three learning schemes demonstrate the theoretically predictable salient features of the adaptive scheme.
Resumo:
We consider the problem of estimating the optimal parameter trajectory over a finite time interval in a parameterized stochastic differential equation (SDE), and propose a simulation-based algorithm for this purpose. Towards this end, we consider a discretization of the SDE over finite time instants and reformulate the problem as one of finding an optimal parameter at each of these instants. A stochastic approximation algorithm based on the smoothed functional technique is adapted to this setting for finding the optimal parameter trajectory. A proof of convergence of the algorithm is presented and results of numerical experiments over two different settings are shown. The algorithm is seen to exhibit good performance. We also present extensions of our framework to the case of finding optimal parameterized feedback policies for controlled SDE and present numerical results in this scenario as well.
Resumo:
Absenteeism is one of the major problems of Indian industries. It necessitates the employment of more manpower than the jobs require, resulting in the increase of manpower costs, and lowers the efficiency of plant operation through lowered performance and higher rejects. It also causes machine idleness, if extra manpower is not hired, resulting in disrupted work schedules and assignments. Several studies have investigated the causes of absenteeism (Vaid 1967) for example and their remedy and relationship between absenteeism and turnover with a suggested model for diagnosis and treatment (Hawk 1976) However, the production foremen and supervisor will face the operating task of determining how many extra operatives are to be hired in order to stave off the adverse effects of absenteeism on the man-machine system. This paper deals with a class of reserve manpower models based on the reject allowance model familiar in quality control literature. The present study considers, in addition to absenteeism, machine failures and the graded nature of manpower met within production systems and seeks to find optimal reserve manpower through computer simulation.
Resumo:
This paper considers the on-line identification of a non-linear system in terms of a Hammerstein model, with a zero-memory non-linear gain followed by a linear system. The linear part is represented by a Laguerre expansion of its impulse response and the non-linear part by a polynomial. The identification procedure involves determination of the coefficients of the Laguerre expansion of correlation functions and an iterative adjustment of the parameters of the non-linear gain by gradient methods. The method is applicable to situations involving a wide class of input signals. Even in the presence of additive correlated noise, satisfactory performance is achieved with the variance of the error converging to a value close to the variance of the noise. Digital computer simulation establishes the practicability of the scheme in different situations.
Resumo:
A semi-empirical model is presented for describing the interionic interactions in molten salts using the experimentally available structure data. An extension of Bertaut's method of non-overlapping charges is used to estimate the electrostatic interaction energy in ionic melts. It is shown, in agreement with earlier computer simulation studies, that this energy increases when an ionic salt melts. The repulsion between ions is described using a compressible ion theory which uses structure-independent parameters. The van der Waals interactions and the thermal free energy are also included in the total energy, which is minimised with respect to isostructural volume variations to calculate the equilibrium density. Detailed results are presented for three molten systems, NaCl, CaCl2 and ZnCl2, and are shown to be in satisfactory agreement with experiments. With reliable structural data now being reported for several other molten salts, the present study gains relevance.
Resumo:
The possibility of using spin-probe electron spin resonance (ESR) as a tool to study glass transition temperature, T g, of polymer electrolytes is explored in 4 hydroxy 2,2,6,6 tetramethylpiperidine N oxyl (TEMPOL) doped composite polymer electrolyte (PEG)46LiClO4 dispersed with nanoparticles of hydrotalcite. The T g is estimated from the measured values of T 50G, the temperature at which the extrema separation 2A zz of the broad powder spectrum decreases to 50 G. In another method, the correlation time τc for the spin probe dynamics was determined by computer simulation of the ESR spectra and T g has been identified as the temperature at which τc begins to show temperature dependence. While both methods give values of T g close to those obtained from differential scanning calorimetry, it is concluded that more work is required to establish spin-probe ESR as a reliable technique for the determination of T g.
Resumo:
A vibration isolator is described which incorporates a near-zero-spring-rate device within its operating range. The device is an assembly of a vertical spring in parallel with two inclined springs. A low spring rate is achieved by combining the equivalent stiffness in the vertical direction of the inclined springs with the stiffness of the vertical central spring. It is shown that there is a relation between the geometry and the stiffness of the individual springs that results in a low spring rate. Computer simulation studies of a single-degree-of-freedom model for harmonic base input show that the performance of the proposed scheme is superior to that of the passive schemes with linear springs and skyhook damping configuration. The response curves show that, for small to large amplitudes of base disturbance, the system goes into resonance at low frequencies of excitation. Thus, it is possible to achieve very good isolation over a wide low-frequency band. Also, the damper force requirements for the proposed scheme are much lower than for the damper force of a skyhook configuration or a conventional linear spring with a semi-active damper.
Resumo:
Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities, and nanotubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulklike condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is nonexponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments. (C) 2010 American Institute of Physics. doi: 10.1063/1.3474948]
Resumo:
A method of source localization in shallow water, based on subspace concept, is described. It is shown that a vector representing the source in the image space spanned by the direction vectors of the source images is orthogonal to the noise eigenspace of the covariance matrix. Computer simulation has shown that a horizontal array of eight sensors can accurately localize one or more uncorrelated sources in shallow water dominated by multipath propagation.
Resumo:
It is shown from an analytical theory that the solvation dynamics of a small ion can be controlled largely by the inertial response of the dipolar solvent when the liquid is in the underdamped limit. It is also shown that this inertial response arises primarily from the long wavelength (with wavevector k≃0) processes which have a collective excitation-like behaviour. The long time decay is dominated by the processes occurring at molecular lengthscales. The theoretical results are in good agreement with recent computer simulation results.
Resumo:
Results of an investigation dealing with the behaviour of grid-connected induction generators (GCIGs) driven by typical prime movers such as mini-hydro/wind turbines are presented. Certain practical operational problems of such systems are identified. Analytical techniques are developed to study the behavior of such systems. The system consists of the induction generator (IG) feeding a 11 kV grid through a step-up transformer and a transmission line. Terminal capacitors to compensate for the lagging VAr are included in the study. Computer simulation was carried out to predict the system performance at the given input power from the turbine. Effects of variations in grid voltage, frequency, input power, and terminal capacitance on the machine and system performance are studied. An analysis of self-excitation conditions on disconnection of supply was carried out. The behavior of a 220 kW hydel system and 55/11 kW and 22 kW wind driven system corresponding to actual field conditions is discussed
Resumo:
In this article we present a new, general but simple, microscopic expression for time-dependent solvation energy of an ion. This expression is surprisingly similar to the expression for the time-dependent dielectric friction on a moving ion. We show that both the Chandra-Bagchi and the Fried-Mukamel formulations of solvation dynamics can be easily derived from this expression. This expression leads to an almost perfect agreement of the theory with all the available computer simulation results. Second, we show here for the first time that the mobility of a light solute ion can significantly accelerate its own solvation, specially in the underdamped limit. The latter result is also in excellent agreement with the computer simulations.
Molecular expression for dielectric friction on a rotating dipole: Reduction to the continuum theory
Resumo:
Recently we presented a microscopic expression for dielectric friction on a rotating dipole. This expression has a rather curious structure, involving the contributions of the transverse polarization modes of the solvent and also of the molecular length scale processes. It is shown here that under proper limiting conditions, this expression reduces exactly to the classical continuum model expression of Nee and Zwanzig [J. Chem. Phys. 52, 6353 (1970)]. The derivation requires the use of the asymptotic form of the orientation‐dependent total pair correlation function, the neglect of the contributions of translational modes of the solvent, and also the use of the limit that the size of the solvent molecules goes to zero. Thus, the derivation can be important in understanding the validity of the continuum model and can also help in explaining the results of a recent computer simulation study of dielectric relaxation in a Brownian dipolar lattice.