56 resultados para Computer conferencing
Resumo:
Checkpoint-1 kinase plays an important role in the G(2)M cell cycle control, therefore its inhibition by small molecules is of great therapeutic interest in oncology. In this paper, we have reported the virtual screening of an in-house library of 2499 pyranopyrazole derivatives against the ATP-binding site of Chk1 kinase using Glide 5.0 program, which resulted in six hits. All these ligands were docked into the site forming most crucial interactions with Cys87, Glu91 and Leu15 residues. From the observed results these ligands are suggested to be potent inhibitors of Chk1 kinase with sufficient scope for further elaboration.
Resumo:
A hybrid computer for structure factor calculations in X-ray crystallography is described. The computer can calculate three-dimensional structure factors of up to 24 atoms in a single run and can generate the scatter functions of well over 100 atoms using Vand et al., or Forsyth and Wells approximations. The computer is essentially a digital computer with analog function generators, thus combining to advantage the economic data storage of digital systems and simple computing circuitry of analog systems. The digital part serially selects the data, computes and feeds the arguments into specially developed high precision digital-analog function generators, the outputs of which being d.c. voltages, are further processed by analog circuits and finally the sequential adder, which employs a novel digital voltmeter circuit, converts them back into digital form and accumulates them in a dekatron counter which displays the final result. The computer is also capable of carrying out 1-, 2-, or 3-dimensional Fourier summation, although in this case, the lack of sufficient storage space for the large number of coefficients involved, is a serious limitation at present.
Resumo:
The modes of binding of alpha- and beta-anomers of D-galactose, D-fucose and D-glucose to L-arabinose-binding protein (ABP) have been studied by energy minimization using the low resolution (2.4 A) X-ray data of the protein. These studies suggest that these sugars preferentially bind in the alpha-form to ABP, unlike L-arabinose where both alpha- and beta-anomers bind almost equally. The best modes of binding of alpha- and beta-anomers of D-galactose and D-fucose differ slightly in the nature of the possible hydrogen bonds with the protein. The residues Arg 151 and Asn 232 of ABP from bidentate hydrogen bonds with both L-arabinose and D-galactose, but not with D-fucose or D-glucose. However in the case of L-arabinose, Arg 151 forms hydrogen bonds with the hydroxyl group at the C-4 atom and the ring oxygen, whereas in case of D-galactose it forms bonds with the hydroxyl groups at the C-4 and C-6 atoms of the pyranose ring. The calculated conformational energies also predict that D-galactose is a better inhibitor than D-fucose and D-glucose, in agreement with kinetic studies. The weak inhibitor D-glucose binds preferentially to one domain of ABP leading to the formation of a weaker complex. Thus these studies provide information about the most probable binding modes of these sugars and also provide a theoretical explanation for the observed differences in their binding affinities.
Resumo:
The CCEM method (Contact Criteria and Energy Minimisation) has been developed and applied to study protein-carbohydrate interactions. The method uses available X-ray data even on the native protein at low resolution (above 2.4 Å) to generate realistic models of a variety of proteins with various ligands.The two examples discussed in this paper are arabinose-binding protein (ABP) and pea lectin. The X-ray crystal structure data reported on ABP-β-l-arabinose complex at 2.8, 2.4 and 1.7 Å resolution differ drastically in predicting the nature of the interactions between the protein and ligand. It is shown that, using the data at 2.4 Å resolution, the CCEM method generates complexes which are as good as the higher (1.7 Å) resolution data. The CCEM method predicts some of the important hydrogen bonds between the ligand and the protein which are missing in the interpretation of the X-ray data at 2.4 Å resolution. The theoretically predicted hydrogen bonds are in good agreement with those reported at 1.7 Å resolution. Pea lectin has been solved only in the native form at 3 Å resolution. Application of the CCEM method also enables us to generate complexes of pea lectin with methyl-α-d-glucopyranoside and methyl-2,3-dimethyl-α-d-glucopyranoside which explain well the available experimental data in solution.
Resumo:
Metallic glasses are of interest because of their mechanical properties. They are ductile as well as brittle. This is true of Pd77.5Cu6Si16.5, a ternary glassy alloy. Actually, the most stable metallic glasses are those which are alloys of noble or transition metals A general formula is postulated as T70–80G30-20where T stands for one or several 3d transition elements, and includes the metalloid glass formers. Another general formula is A3B to A5B where B is a metalloid. A computer method utilising the MIGAP computer program of Kaufman is used to calculate the miscibility gap over a range of temperatures. The precipitation of a secondary crystalline phase is postulated around 1500K. This could produce a dispersed phase composite with interesting high temperature-strength properties.
Resumo:
The quaternary system Sb1bTe1bBi1bSe with small amounts of suitable dopants is of interest for the manufacture of thermoelectric modules which exhibit the Peltier and Seebeck effects. This property could be useful in the production of energy from the thermoelectric effect. Other substances are bismuth telluride (Bi2Te3) and Sb1bTe1bBi and compounds such as ZnIn2Se4. In the present paper the application of computer programs such as MIGAP of Kaufman is used to indicate the stability of the ternary limits of Sb1bTe1bBi within the temperature ranges of interest, namely 273 K to 300 K.
Resumo:
The compounds CdHgTe and its constituent binaries CdTe, HgTe, and CdHg are semiconductors which are used in thermal, infrared, nuclear, thermoelectric and other photo sensitive devices. The compound CdHgTe has a Sphaleritic structure of possible type A1IIB1IIC6VI. The TERCP program of Kaufman is used to estimate the stable regions of the ternary phase diagram using available thermodynamic data. It was found that there was little variation in stochiometry with temperature. The compositions were calculated for temperatures ranging from 325K to 100K and the compositional limits were Cd13−20Hg12−01Te75−79, Hg varying most. By comparison with a similar compound, Cd In2Te4 of forbidden band width. 88 to .90 e.V., similar properties are postulated for Cd1Hg1Te6 with applications in the infra red region of the spectrum at 300K where this composition is given by TERCP at the limit of stability.
Resumo:
The mechanism of action of ribonuclease (RNase) T1 is still a matter of considerable debate as the results of x-ray, 2-D nmr and site-directed mutagenesis studies disagree regarding the role of the catalytically important residues. Hence computer modelling studies were carried out by energy minimisation of the complexes of RNase T1 and some of its mutants (His40Ala, His40Lys, and Glu58Ala) with the substrate guanyl cytosine (GpC), and of native RNase T1 with the reaction intermediate guanosine 2',3'-cyclic phosphate (G greater than p). The puckering of the guanosine ribose moiety in the minimum energy conformer of the RNase T1-GpC (substrate) complex was found to be O4'-endo and not C3'-endo as in the RNase T1-3'-guanylic acid (inhibitor/product) complex. A possible scheme for the mechanism of action of RNase T1 has been proposed on the basis of the arrangement of the catalytically important amino acid residues His40, Glu58, Arg77, and His92 around the guanosine ribose and the phosphate moiety in the RNase T1-GpC and RNase T1-G greater than p complexes. In this scheme, Glu58 serves as the general base group and His92 as the general acid group in the transphosphorylation step. His40 may be essential for stabilising the negatively charged phosphate moiety in the enzyme-transition state complex.
Resumo:
Computer-modelling studies on the modes of binding of the three guanosine monophosphate inhibitors 2'-GMP, 3'-GMP, and 5'-GMP to ribonuclease (RNase) T1 have been carried out by energy minimization in Cartesian-coordinate space. The inhibitory power was found to decrease in the order 2'-GMP > 3'-GMP > 5'-GMP in agreement with the experimental observations. The ribose moiety was found to form hydrogen bonds with the protein in all the enzyme-inhibitor complexes, indicating that it contributes to the binding energy and does not merely act as a spacer between the base and the phosphate moieties as suggested earlier. 2'-GMP and 5'-GMP bind to RNase T1 in either of the two ribose puckered forms (with C3'-endo more favoured over the C2'-endo) and 3'-GMP binds to RNase T1 predominantly in C3'-endo form. The catalytically important residue His-92 was found to form hydrogen bond with the phosphate moiety in all the enzyme-inhibitor complexes, indicating that this residue may serve as a general acid group during catalysis. Such an interaction was not found in either X-ray or two-dimensional NMR studies.
Resumo:
Different modes of binding of pyrimidine monophosphates 2'-UMP, 3'-UMP, 2'-CMP and 3'-CMP to ribonuclease (RNase) A are studied by energy minimization in torsion angle and subsequently in Cartesian coordinate space. The results are analysed in the light of primary binding sites. The hydrogen bonding pattern brings out roles for amino acids such as Asn44 and Ser123 apart from the well known active site residues viz., His12,Lys41,Thr45 and His119. Amino acid segments 43-45 and 119-121 seem to be guiding the ligand binding by forming a pocket. Many of the active site charged residues display considerable movement upon nucleotide binding.