34 resultados para Computational Simulation
Resumo:
We compare magnetovolume effects in bulk and nanoparticles by performing Monte Carlo simulations of a spin-analogous model with coupled spatial and magnetic degrees of freedom and chemical disorder. We find that correlations between surface and bulk atoms lead with decreasing particle size to a substantial modification of the magnetic and elastic behavior at low temperatures.
Resumo:
We offer a technique, motivated by feedback control and specifically sliding mode control, for the simulation of differential-algebraic equations (DAEs) that describe common engineering systems such as constrained multibody mechanical structures and electric networks. Our algorithm exploits the basic results from sliding mode control theory to establish a simulation environment that then requires only the most primitive of numerical solvers. We circumvent the most important requisite for the conventionalsimulation of DAEs: the calculation of a set of consistent initial conditions. Our algorithm, which relies on the enforcement and occurrence of sliding mode, will ensure that the algebraic equation is satisfied by the dynamic system even for inconsistent initial conditions and for all time thereafter. [DOI:10.1115/1.4001904]
Resumo:
An implicit sub-grid scale model for large eddy simulation is presented by utilising the concept of a relaxation system for one dimensional Burgers' equation in a novel way. The Burgers' equation is solved for three different unsteady flow situations by varying the ratio of relaxation parameter (epsilon) to time step. The coarse mesh results obtained with a relaxation scheme are compared with the filtered DNS solution of the same problem on a fine mesh using a fourth-order CWENO discretisation in space and third-order TVD Runge-Kutta discretisation in time. The numerical solutions obtained through the relaxation system have the same order of accuracy in space and time and they closely match with the filtered DNS solutions.
Resumo:
Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.
Resumo:
An improved Monte Carlo technique is presented in this work to simulate nanoparticle formation through a micellar route. The technique builds on the simulation technique proposed by Bandyopadhyaya et al. (Langmuir 2000, 16, 7139) which is general and rigorous but at the same time very computation intensive, so much so that nanoparticle formation in low occupancy systems cannot be simulated in reasonable time. In view of this, several strategies, rationalized by simple mathematical analyses, are proposed to accelerate Monte Carlo simulations. These are elimination of infructuous events, removal of excess reactant postreaction, and use of smaller micelle population a large number of times. Infructuous events include collision of an empty micelle with another empty one or with another one containing only one molecule or only a solid particle. These strategies are incorporated in a new simulation technique which divides the entire micelle population in four classes and shifts micelles from one class to other as the simulation proceeds. The simulation results, throughly tested using chi-square and other tests, show that the predictions of the improved technique remain unchanged, but with more than an order of magnitude decrease in computational effort for some of the simulations reported in the literature. A post priori validation scheme for the correctness of the simulation results has been utilized to propose a new simulation strategy to arrive at converged simulation results with near minimum computational effort.
Resumo:
CFD investigations are carried out to study the heat flux and temperature distribution in the calandria using a 3–Dimensional RANS code. Internal flow computations and experimental studies are carried out for a calandria embedded with a matrix of tubes working together as a reactor. Numerical investigations are carried on the Calandria reactor vessel with horizontal inlets and outlets located on top and the bottom to study the flow pattern and the associated temperature distribution. The computations have been carried out to simulate fluid flow and convective heat transfer for assigned near–to working conditions with different moderator injection rates and reacting heat fluxes. The results of computations provide an estimate of the tolerance bands for safe working limits for the heat dissipation at different working conditions by virtue of prediction of the hot spots in the calandria. The isothermal CFD results are validated by a set of experiments on a specially designed scaled model conducted over a range of flows and simulation parameters. The comparison of CFD results with experiments show good agreement.
Resumo:
Computations have been carried out for simulating supersonic flow through a set of converging-diverging nozzles with their expanding jets forming a laser cavity and flow patterns through diffusers, past the cavity. A thorough numerical investigation with 3-D RANS code is carried out to capture the flow distribution which comprises of shock patterns and multiple supersonic jet interactions. The analysis of pressure recovery characteristics during the flow through the diffusers is an important parameter of the simulation and is critical for the performance of the laser device. The results of the computation have shown a close agreement with the experimentally measured parameters as well as other established results indicating that the flow analysis done is found to be satisfactory.
Resumo:
Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic alpha (FIS alpha) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
An extension to a formal verification approach of hybrid systems is proposed to verify analog and mixed signal (AMS) designs. AMS designs can be formally modeled as hybrid systems and therefore lend themselves to the formal analysis and verification techniques applied to hybrid systems. The proposed approach employs simulation traces obtained from an actual design implementation of AMS circuit blocks (for example, in the form of SPICE netlists) to carry out formal analysis and verification. This enables the same platform used for formally validating an abstract model of an AMS design, to be also used for validating its different refinements and design implementation; thereby, providing a simple route to formal verification at different levels of implementation. The feasibility of the proposed approach is demonstrated with a case study based on a tunnel diode oscillator. Since the device characteristic of a tunnel diode is highly non-linear with a negative resistance region, dynamic behavior of circuits in which it is employed as an element is difficult to model, analyze and verify within a general hybrid system formal verification tool. In the case study presented the formal model and the proposed computational techniques have been incorporated into CheckMate, a formal verification tool based on MATLAB and Simulink-Stateflow Framework from MathWorks.
Resumo:
In recent times computational algorithms inspired by biological processes and evolution are gaining much popularity for solving science and engineering problems. These algorithms are broadly classified into evolutionary computation and swarm intelligence algorithms, which are derived based on the analogy of natural evolution and biological activities. These include genetic algorithms, genetic programming, differential evolution, particle swarm optimization, ant colony optimization, artificial neural networks, etc. The algorithms being random-search techniques, use some heuristics to guide the search towards optimal solution and speed-up the convergence to obtain the global optimal solutions. The bio-inspired methods have several attractive features and advantages compared to conventional optimization solvers. They also facilitate the advantage of simulation and optimization environment simultaneously to solve hard-to-define (in simple expressions), real-world problems. These biologically inspired methods have provided novel ways of problem-solving for practical problems in traffic routing, networking, games, industry, robotics, economics, mechanical, chemical, electrical, civil, water resources and others fields. This article discusses the key features and development of bio-inspired computational algorithms, and their scope for application in science and engineering fields.
Resumo:
Flap dynamics of HIV-1 protease (HIV-pr) controls the entry of inhibitors and substrates to the active site. Dynamical models from previous simulations are not all consistent with each other and not all are supported by the NMR results. In the present work, the er effect of force field on the dynamics of HIV-pr is investigated by MD simulations using three AMBER force fields ff99, ff99SB, and ff03. The generalized order parameters for amide backbone are calculated from the three force fields and compared with the NMR S2 values. We found that the ff99SB and ff03 force field calculated order parameters agree reasonably well with the NMR S2 values, whereas ff99 calculated values deviate most from the NMR order parameters. Stereochemical geometry of protein models from each force field also agrees well with the remarks from NMR S2 values. However, between ff99SB and ff03, there are several differences, most notably in the loop regions. It is found that these loops are, in general, more flexible in the ff03 force field. This results in a larger active site cavity in the simulation with the ff03 force field. The effect of this difference in computer-aided drug design against flexible receptors is discussed.
Resumo:
This paper presents computational work on the biogas early phase combustion in spark ignition (SI) engines using detailed chemical kinetics. Specifically, the early phase combustion is studied to assess the effect of various ignition parameters such as spark plug location, spark energy, and number of spark plugs. An integrated version of the KIVA-3V and CHEMKIN codes was developed and used for the simulations utilizing detailed kinetics involving 325 reactions and 53 species The results show that location of the spark plug and local flow field play an important role. A central plug configuration, which is associated with higher local flow velocities in the vicinity of the spark plug, showed faster initial combustion. Although a dual plug configuration shows the highest rate of fuel consumption, it is comparable to the rate exhibited by the central plug case. The radical species important in the initiation of combustion are identified, and their concentrations are monitored during the early phase of combustion. The concentration of these radicals is also observed to correlate very well with the above-mentioned trend.Thus, the role of these radicals in promoting faster combustion has been clearly established. It is also observed that the minimum ignition energy required to initiate a self-sustained flame depends on the flow field condition in the vicinity of the spark plug.Increasing the methane content in the biogas has shown improved combustion.
Resumo:
We discuss the computational bottlenecks in molecular dynamics (MD) and describe the challenges in parallelizing the computation-intensive tasks. We present a hybrid algorithm using MPI (Message Passing Interface) with OpenMP threads for parallelizing a generalized MD computation scheme for systems with short range interatomic interactions. The algorithm is discussed in the context of nano-indentation of Chromium films with carbon indenters using the Embedded Atom Method potential for Cr-Cr interaction and the Morse potential for Cr-C interactions. We study the performance of our algorithm for a range of MPI-thread combinations and find the performance to depend strongly on the computational task and load sharing in the multi-core processor. The algorithm scaled poorly with MPI and our hybrid schemes were observed to outperform the pure message passing scheme, despite utilizing the same number of processors or cores in the cluster. Speed-up achieved by our algorithm compared favorably with that achieved by standard MD packages. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Single fluid schemes that rely on an interface function for phase identification in multicomponent compressible flows are widely used to study hydrodynamic flow phenomena in several diverse applications. Simulations based on standard numerical implementation of these schemes suffer from an artificial increase in the width of the interface function owing to the numerical dissipation introduced by an upwind discretization of the governing equations. In addition, monotonicity requirements which ensure that the sharp interface function remains bounded at all times necessitate use of low-order accurate discretization strategies. This results in a significant reduction in accuracy along with a loss of intricate flow features. In this paper we develop a nonlinear transformation based interface capturing method which achieves superior accuracy without compromising the simplicity, computational efficiency and robustness of the original flow solver. A nonlinear map from the signed distance function to the sigmoid type interface function is used to effectively couple a standard single fluid shock and interface capturing scheme with a high-order accurate constrained level set reinitialization method in a way that allows for oscillation-free transport of the sharp material interface. Imposition of a maximum principle, which ensures that the multidimensional preconditioned interface capturing method does not produce new maxima or minima even in the extreme events of interface merger or breakup, allows for an explicit determination of the interface thickness in terms of the grid spacing. A narrow band method is formulated in order to localize computations pertinent to the preconditioned interface capturing method. Numerical tests in one dimension reveal a significant improvement in accuracy and convergence; in stark contrast to the conventional scheme, the proposed method retains its accuracy and convergence characteristics in a shifted reference frame. Results from the test cases in two dimensions show that the nonlinear transformation based interface capturing method outperforms both the conventional method and an interface capturing method without nonlinear transformation in resolving intricate flow features such as sheet jetting in the shock-induced cavity collapse. The ability of the proposed method in accounting for the gravitational and surface tension forces besides compressibility is demonstrated through a model fully three-dimensional problem concerning droplet splash and formation of a crownlike feature. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman-Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.