34 resultados para Competitive Displacement
Resumo:
Four cationic acridine derivatives have been synthesized. The positively charged amine residue in one of these is connected directly on to the acridine nucleus and in three other acridines, the amines are connected via a 9-CH2 unit to acridine. We have investigated the binding of these acridines with mammalian DNA by absorption titration, UV- and induced-CD spectroscopy and competitive ethidium bromide displacement fluorescence assay. The effects on the DNA duplex denaturation melting temperatures upon binding of each one of these are also examined. The results obtained herein clearly show that the introduction of a -CH2 group in the im mediate vicinity of the interrelation moiety introduces alterations in the DNA binding characteristics of the resulting acridines.
Resumo:
The adsorption of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) onto alumina has been studied as a function of pH, both individually and in the presence of each other. The adsorption density of PAA is found to decrease with an increase of pH while that of PVA shows the opposite trend. In a binary system containing PAA and PVA, the presence of PVA does not affect the adsorption of PAA onto alumina, but the addition of PAA diminishes the adsorption of PVA in the pH range investigated. The adsorption isotherm of PAA at acidic pH exhibits high-affinity Langmuirian behavior. The isotherms for PVA appear rounded and are of the low-affinity type, Once again the adsorption isotherms of PAA remain unaltered in the presence of PVA whereas those of PVA are significantly affected resulting in a lowering of the adsorption density consequent to PAA addition. A variation in the sequence of addition of PAA and PVA does not affect the adsorption behavior of either of the polymers, The electrokinetic behavior of alumina with PAA is hardly influenced by the addition of PVA, On the other hand, the electrophoretic mobility of alumina in the presence of PVA is significantly altered in the presence of PAA and closely resembles the trend observed with PAA alone. Desorption studies reveal that over 80% of PVA could be desorbed in the pH range 3-9 whereas in the case of PAA, the percent desorption increases from 20 to about 70% as the pH is increased from about 3 to 8. Solution conductivity tests confirm interaction of aluminum species and PAA in the bulk solution. FTIR spectroscopic data provide evidence in support of hydrogen bonding and chemical interaction in the case of the PAA-alumina system and hydrogen bonding with respect to the PVA-alumina interaction. (C) 1999 Academic Press.
Resumo:
This paper presents a new approach by making use of a hybrid method of using the displacement discontinuity element method and direct boundary element method to model concrete cracking by incorporating fictitious crack model. Fracture mechanics approach is followed using the Hillerborg's fictitious crack model. A boundary element based substructure method and a hybrid technique of using displacement discontinuity element method and direct boundary element method are compared in this paper. In order to represent the process zone ahead of the crack, closing forces are assumed to act in such a way that they obey a linear normal stress-crack opening displacement law. Plain concrete beams with and without initial crack under three-point loading were analyzed by both the methods. The numerical results obtained were shown to agree well with the results from existing finite element method. The model is capable of reproducing the whole range of load-deflection response including strain-softening and snap-back behavior as illustrated in the numerical examples. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Novel designs for two-axis, high-resolution, monolithic inertial sensors are presented in this paper. Monolithic, i.e., joint-less single-piece compliant designs are already common in micromachined inertial sensors such as accelerometers and gyroscopes. Here, compliant mechanisms are used not only to achieve de-coupling between motions along two orthogonal axes but also to amplify the displacements of the proof-mass. Sensitivity and resolution capabilities are enhanced because the amplified motion is used for sensing the measurand. A particular symmetric arrangement of displacement-amplifying compliant mechanisms (DaCMs) leads to de-coupled and amplified motion. An existing DaCM and a new topology-optimized DaCM are presented as a building block in the new arrangement. A spring-mass-lever model is presented as a lumped abstraction of the new arrangement. This model is useful for arriving at the optimal parameters of the DaCM and for performing system-level simulation. The new designs improved the performance by a factor of two or more.
Resumo:
Displacement-amplifying compliant mechanisms (DaCMs) reported in literature are mostly used for actuator applications. This paper considers them for sensor applications that rely on displacement measurement, and evaluates them objectively. The main goal is to increase the sensitivity under constraints imposed by several secondary requirements and practical constraints. A spring-mass-lever model that effectively captures the addition of a DaCM to a sensor is used in comparing eight DaCMs. We observe that they significantly differ in performance criteria such as geometric advantage, stiffness, natural frequency, mode amplification, factor of safety against failure, cross-axis stiffness, etc., but none excel in all. Thus, a combined figure of merit is proposed using which the most suitable DaCM could be selected for a sensor application. A case-study of a micro machined capacitive accelerometer and another case-study of a vision-based force sensor are included to illustrate the general evaluation and selection procedure of DaCMs with specific applications. Some other insights gained with the analysis presented here were the optimum size-scale for a DaCM, the effect on its natural frequency, limits on its stiffness, and working range of the sensor.
Resumo:
Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.
Resumo:
We have studied the magnetic field (H∥c) dependent rf dissipation (Hrf∥a) in an as-grown Bi2Sr2CaCu2O8 single crystal prior to and after irradiation with 250 MeV 107Ag17+ ions. In a comparison of the responses from the as-grown crystal with an air-annealed crystal, features due to oxygen deficient regions acting as weak links in the former are identified. These features disappear immediately after irradiation of the as-grown crystal. We attribute such behavior to the displacement of oxygen from columnar tracks to deficient regions thus eliminating the weak links. Losses from the same irradiated as-grown crystal stored at 300 K for 60 days show that the features similar but not identical to those observed in the pristine state have reappeared implying that the displaced oxygen is in a metastable configuration in the deficient regions and hence is mobile due to thermal effects even at 300 K.
Resumo:
The realistic estimation of the dynamic characteristics for a known set of loading conditions continues to be difficult despite many contributions in the past. The design of a machine foundation is generally made on the basis of limiting amplitude or resonant frequency. These parameters are in turn dependent on the dynamic characteristics of soil viz., the shear modulus/stiffness and damping. The work reported herein is an attempt to relate statistically the shear modulus of a soil to its resonant amplitude under a known set of static and dynamic loading conditions as well as wide ranging soil conditions. The two parameters have been statistically related with a good correlation coefficient and low standard error of estimate.
Resumo:
The enantiospecific total synthesis of silphiperfol-6-ene has been accomplished starting from the readily available monoterpene (R)-limonene, employing a rhodium carbenoid insertion into the CH bond of a tertiary methyl group. A substrate dependent competitive insertion of the rhodium carbenoid in the gamma- and beta-CH bonds to form cyclopentanone and cyclobutanones, respectively, has been described. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A micro-newton static force sensor is presented here as a packaged product. The sensor, which is based on the mechanics of deformable objects, consists of a compliant mechanism that amplifies the displacement caused by the force that is to be measured. The output displacement, captured using a digital microscope and analyzed using image processing techniques, is used to calculate the force using precalibrated force-displacement curve. Images are scanned in real time at a frequency of 15 frames per second and sampled at around half the scanning frequency. The sensor was built, packaged, calibrated, and tested. It has simulated and measured stiffness values of 2.60N/m and 2.57N/m, respectively. The smallest force it can reliably measure in the presence of noise is about 2 mu N over a range of 1.4mN. The off-the-shelf digital microscope aside, all of its other components are purely mechanical; they are inexpensive and can be easily made using simple machines. Another highlight of the sensor is that its movable and delicate components are easily replaceable. The sensor can be used in aqueous environment as it does not use electric, magnetic, thermal, or any other fields. Currently, it can only measure static forces or forces that vary at less than 1Hz because its response time and bandwidth are limited by the speed of imaging with a camera. With a universal serial bus (USB) connection of its digital microscope, custom-developed graphical user interface (GUI), and related software, the sensor is fully developed as a readily usable product.
Resumo:
With the premise that electronic noise dominates mechanical noise in micromachined accelerometers, we present here a method to enhance the sensitivity and resolution at kHz bandwidth using mechanical amplification. This is achieved by means of a Displacement-amplifying Compliant Mechanism (DaCM) that is appended to the usual sensing element comprising a proof-mass and a suspension. Differential comb-drive arrangement is used for capacitive-sensing. The DaCM is designed to match the stiffness of the suspension so that there is substantial net amplification without compromising the bandwidth. A spring-mass-lever model is used to estimate the lumped parameters of the system. A DaCM-aided accelerometer and another without a DaCM-both occupying the same footprint-are compared to show that the former gives enhanced sensitivity: 8.7 nm/g vs. 1.4 nm/g displacement at the sensing-combs under static conditions. A prototype of the DaCM-aided micromachined acclerometer was fabricated using bulk-micromachining. It was tested at the die-level and then packaged on a printed circuit board with an off-the-shelf integrated chip for measuring change in capacitance. Under dynamic conditions, the measured amplification factor at the output of the DaCM was observed to be about 11 times larger than the displacement of the proof-mass and thus validating the concept of enhancing the sensitivity of accelerometers using mechanical amplifiers. The measured first in-plane natural frequency of the fabricated accelerometer was 6.25 kHz. The packaged accelerometer with the DaCM was measured to have 26.7 mV/g sensitivity at 40 Hz.
Resumo:
Asymptotically-accurate dimensional reduction from three to two dimensions and recovery of 3-D displacement field of non-prestretched dielectric hyperelastic membranes are carried out using the Variational Asymptotic Method (VAM) with moderate strains and very small ratio of the membrane thickness to its shortest wavelength of the deformation along the plate reference surface chosen as the small parameters for asymptotic expansion. Present work incorporates large deformations (displacements and rotations), material nonlinearity (hyperelasticity), and electrical effects. It begins with 3-D nonlinear electroelastic energy and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a 2-D nonlinear plate analysis. Major contribution of this paper is a comprehensive nonlinear through-the-thickness analysis which provides a 2-D energy asymptotically equivalent of the 3-D energy, a 2-D constitutive relation between the 2-D generalized strain and stress tensors for the plate analysis and a set of recovery relations to express the 3-D displacement field. Analytical expressions are derived for warping functions and stiffness coefficients. This is the first attempt to integrate an analytical work on asymptotically-accurate nonlinear electro-elastic constitutive relation for compressible dielectric hyperelastic model with a generalized finite element analysis of plates to provide 3-D displacement fields using VAM. A unified software package `VAMNLM' (Variational Asymptotic Method applied to Non-Linear Material models) was developed to carry out 1-D non-linear analysis (analytical), 2-D non-linear finite element analysis and 3-D recovery analysis. The applicability of the current theory is demonstrated through an actuation test case, for which distribution of 3-D displacements are provided. (C) 2014 Elsevier Ltd. All rights reserved.