18 resultados para Coloring book


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a'(G) ? ? + 2, where ? = ?(G) denotes the maximum degree of the graph. If every induced subgraph H of G satisfies the condition |E(H)| ? 2|V(H)|-1, we say that the graph G satisfies Property A. In this article, we prove that if G satisfies Property A, then a'(G) ? ? + 3. Triangle-free planar graphs satisfy Property A. We infer that a'(G) ? ? + 3, if G is a triangle-free planar graph. Another class of graph which satisfies Property A is 2-fold graphs (union of two forests). (C) 2011 Wiley Periodicals, Inc. J Graph Theory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After a brief discussion of the history of the problem, we propose a generalization of the map coloring problem to higher dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q >= 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q >= 2, and has been well-studied from the point of view of approximation. Our main focus is the case when q = 2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.