33 resultados para Cognitive capitalism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency hopping communications, used in the military present significant opportunities for spectrum reuse via the cognitive radio technology. We propose a MAC which incorporates hop instant identification, and supports network discovery and formation, QOS Scheduling and secondary communications. The spectrum sensing algorithm is optimized to deal with the problem of spectral leakage. The algorithms are implemented in a SDR platform based test bed and measurement results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the underlay mode of cognitive radio, secondary users can transmit when the primary is transmitting, but under tight interference constraints, which limit the secondary system performance. Antenna selection (AS)-based multiple antenna techniques, which require less hardware and yet exploit spatial diversity, help improve the secondary system performance. In this paper, we develop the optimal transmit AS rule that minimizes the symbol error probability (SEP) of an average interference-constrained secondary system that operates in the underlay mode. We show that the optimal rule is a non-linear function of the power gains of the channels from secondary transmit antenna to primary receiver and secondary transmit antenna to secondary receive antenna. The optimal rule is different from the several ad hoc rules that have been proposed in the literature. We also propose a closed-form, tractable variant of the optimal rule and analyze its SEP. Several results are presented to compare the performance of the closed-form rule with the ad hoc rules, and interesting inter-relationships among them are brought out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmit antenna selection (AS) is a popular, low hardware complexity technique that improves the performance of an underlay cognitive radio system, in which a secondary transmitter can transmit when the primary is on but under tight constraints on the interference it causes to the primary. The underlay interference constraint fundamentally changes the criterion used to select the antenna because the channel gains to the secondary and primary receivers must be both taken into account. We develop a novel and optimal joint AS and transmit power adaptation policy that minimizes a Chernoff upper bound on the symbol error probability (SEP) at the secondary receiver subject to an average transmit power constraint and an average primary interference constraint. Explicit expressions for the optimal antenna and power are provided in terms of the channel gains to the primary and secondary receivers. The SEP of the optimal policy is at least an order of magnitude lower than that achieved by several ad hoc selection rules proposed in the literature and even the optimal antenna selection rule for the case where the transmit power is either zero or a fixed value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In underlay cognitive radio (CR), a secondary user (SU) can transmit concurrently with a primary user (PU) provided that it does not cause excessive interference at the primary receiver (PRx). The interference constraint fundamentally changes how the SU transmits, and makes link adaptation in underlay CR systems different from that in conventional wireless systems. In this paper, we develop a novel, symbol error probability (SEP)-optimal transmit power adaptation policy for an underlay CR system that is subject to two practically motivated constraints, namely, a peak transmit power constraint and an interference outage probability constraint. For the optimal policy, we derive its SEP and a tight upper bound for MPSK and MQAM constellations when the links from the secondary transmitter (STx) to its receiver and to the PRx follow the versatile Nakagami-m fading model. We also characterize the impact of imperfectly estimating the STx-PRx link on the SEP and the interference. Extensive simulation results are presented to validate the analysis and evaluate the impact of the constraints, fading parameters, and imperfect estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of wireless channel allocation (whenever the channels are free) to multiple cognitive radio users in a Cognitive Radio Network (CRN) so as to satisfy their Quality of Service (QoS) requirements efficiently. The CRN base station may not know the channel states of all the users. The multiple channels are available at random times. In this setup Opportunistic Splitting can be an attractive solution. A disadvantage of this algorithm is that it requires the metrics of all users to be an independent, identically distributed sequence. However we use a recently generalized version of this algorithm in which the optimal parameters are learnt on-line through stochastic approximation and metrics can be Markov. We provide scheduling algorithms which maximize weighted-sum system throughput or are throughput or delay optimal. We also consider the scenario when some traffic streams are delay sensitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurately characterizing the time-varying interference caused to the primary users is essential in ensuring a successful deployment of cognitive radios (CR). We show that the aggregate interference at the primary receiver (PU-Rx) from multiple, randomly located cognitive users (CUs) is well modeled as a shifted lognormal random process, which is more accurate than the lognormal and the Gaussian process models considered in the literature, even for a relatively dense deployment of CUs. It also compares favorably with the asymptotically exact stable and symmetric truncated stable distribution models, except at high CU densities. Our model accounts for the effect of imperfect spectrum sensing, which depends on path-loss, shadowing, and small-scale fading of the link from the primary transmitter to the CU; the interweave and underlay modes or CR operation, which determine the transmit powers of the CUs; and time-correlated shadowing and fading of the links from the CUs to the PU-Rx. It leads to expressions for the probability distribution function, level crossing rate, and average exceedance duration. The impact of cooperative spectrum sensing is also characterized. We validate the model by applying it to redesign the primary exclusive zone to account for the time-varying nature of interference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of an underlay cognitive radio (CR) system, which can transmit when the primary is on, is curtailed by tight constraints on the interference it can cause to the primary receiver. Transmit antenna selection (AS) improves the performance of underlay CR by exploiting spatial diversity but with less hardware. However, the selected antenna and its transmit power now both depend on the channel gains to the secondary and primary receivers. We develop a novel Chernoffbound based optimal AS and power adaptation (CBBOASPA) policy that minimizes an upper bound on the symbol error probability (SEP) at the secondary receiver, subject to constraints on the average transmit power and the average interference to the primary. The optimal antenna and its power are presented in an insightful closed form in terms of the channel gains. We then analyze the SEP of CBBOASPA. Extensive benchmarking shows that the SEP of CBBOASPA for both MPSK and MQAM is one to two orders of magnitude lower than several ad hoc AS policies and even optimal AS with on-off power control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an underlay cognitive radio (CR) system, a secondary user can transmit when the primary is transmitting but is subject to tight constraints on the interference it causes to the primary receiver. Amplify-and-forward (AF) relaying is an effective technique that significantly improves the performance of a CR by providing an alternate path for the secondary transmitter's signal to reach the secondary receiver. We present and analyze a novel optimal relay gain adaptation policy (ORGAP) in which the relay is interference aware and optimally adapts both its gain and transmit power as a function of its local channel gains. ORGAP minimizes the symbol error probability at the secondary receiver subject to constraints on the average relay transmit power and on the average interference caused to the primary. It is different from ad hoc AF relaying policies and serves as a new and fundamental theoretical benchmark for relaying in an underlay CR. We also develop a near-optimal and simpler relay gain adaptation policy that is easy to implement. An extension to a multirelay scenario with selection is also developed. Our extensive numerical results for single and multiple relay systems quantify the power savings achieved over several ad hoc policies for both MPSK and MQAM constellations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of adaptive group testing to find a spectrum hole of a specified bandwidth in a given wideband of interest. We propose a group testing-based spectrum hole search algorithm that exploits sparsity in the primary spectral occupancy by testing a group of adjacent subbands in a single test. This is enabled by a simple and easily implementable sub-Nyquist sampling scheme for signal acquisition by the cognitive radios (CRs). The sampling scheme deliberately introduces aliasing during signal acquisition, resulting in a signal that is the sum of signals from adjacent subbands. Energy-based hypothesis tests are used to provide an occupancy decision over the group of subbands, and this forms the basis of the proposed algorithm to find contiguous spectrum holes of a specified bandwidth. We extend this framework to a multistage sensing algorithm that can be employed in a variety of spectrum sensing scenarios, including noncontiguous spectrum hole search. Furthermore, we provide the analytical means to optimize the group tests with respect to the detection thresholds, number of samples, group size, and number of stages to minimize the detection delay under a given error probability constraint. Our analysis allows one to identify the sparsity and SNR regimes where group testing can lead to significantly lower detection delays compared with a conventional bin-by-bin energy detection scheme; the latter is, in fact, a special case of the group test when the group size is set to 1 bin. We validate our analytical results via Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cognitive Radio (CR) is a promising technology which provides a novel way to subjugate the issue of spectrum underutilization caused due to the fixed spectrum assignment policies. In this paper we report the design and implementation of a soft-real time CR MAC, consisting of multiple secondary users, in a frequency hopping (Fit) primary scenario. This MAC is capable of sensing the spectrum and dynamically allocating the available frequency bands to multiple CR users based on their QoS requirements. As the primary is continuously hopping, a method has also been implemented to detect the hop instant of the primary network. Synchronization usually requires real time support, however we have been able to achieve this with a soft-real time technique which enables a fully software implementation of CR MAC layer. We demonstrate the wireless transmission and reception of video over this CR testbed through opportunistic spectrum access. The experiments carried out use an open source software defined radio package called GNU Radio and a basic radio hardware component USRP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial emotions are the most expressive way to display emotions. Many algorithms have been proposed which employ a particular set of people (usually a database) to both train and test their model. This paper focuses on the challenging task of database independent emotion recognition, which is a generalized case of subject-independent emotion recognition. The emotion recognition system employed in this work is a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). McFIS has two components, a neuro-fuzzy inference system, which is the cognitive component and a self-regulatory learning mechanism, which is the meta-cognitive component. The meta-cognitive component, monitors the knowledge in the neuro-fuzzy inference system and decides on what-to-learn, when-to-learn and how-to-learn the training samples, efficiently. For each sample, the McFIS decides whether to delete the sample without being learnt, use it to add/prune or update the network parameter or reserve it for future use. This helps the network avoid over-training and as a result improve its generalization performance over untrained databases. In this study, we extract pixel based emotion features from well-known (Japanese Female Facial Expression) JAFFE and (Taiwanese Female Expression Image) TFEID database. Two sets of experiment are conducted. First, we study the individual performance of both databases on McFIS based on 5-fold cross validation study. Next, in order to study the generalization performance, McFIS trained on JAFFE database is tested on TFEID and vice-versa. The performance The performance comparison in both experiments against SVNI classifier gives promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Action recognition plays an important role in various applications, including smart homes and personal assistive robotics. In this paper, we propose an algorithm for recognizing human actions using motion capture action data. Motion capture data provides accurate three dimensional positions of joints which constitute the human skeleton. We model the movement of the skeletal joints temporally in order to classify the action. The skeleton in each frame of an action sequence is represented as a 129 dimensional vector, of which each component is a 31) angle made by each joint with a fixed point on the skeleton. Finally, the video is represented as a histogram over a codebook obtained from all action sequences. Along with this, the temporal variance of the skeletal joints is used as additional feature. The actions are classified using Meta-Cognitive Radial Basis Function Network (McRBFN) and its Projection Based Learning (PBL) algorithm. We achieve over 97% recognition accuracy on the widely used Berkeley Multimodal Human Action Database (MHAD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooperative relaying combined with selection exploits spatial diversity to significantly improve the performance of interference-constrained secondary users in an underlay cognitive radio (CR) network. However, unlike conventional relaying, the state of the links between the relay and the primary receiver affects the choice of the relay. Further, while the optimal amplify-and-forward (AF) relay selection rule for underlay CR is well understood for the peak interference-constraint, this is not so for the less conservative average interference constraint. For the latter, we present three novel AF relay selection (RS) rules, namely, symbol error probability (SEP)-optimal, inverse-of-affine (IOA), and linear rules. We analyze the SEPs of the IOA and linear rules and also develop a novel, accurate approximation technique for analyzing the performance of AF relays. Extensive numerical results show that all the three rules outperform several RS rules proposed in the literature and generalize the conventional AF RS rule.