125 resultados para Cognitive Processing
Resumo:
Processing of Sesbania mosaic virus (SeMV) polyprotein 2a and 2ab was reanalyzed in the view of the new genome organization of sobemoviruses. Polyprotein 2a when expressed in E coli, from the new cDNA clone, got cleaved at the earlier identified sites E325-T326, E402-T403 and E498-S499 to release protease, VPg, P10 and P8, respectively. Additionally, a novel cleavage was identified within the protease domain at position E132-S133, which was found to be essential for efficient polyprotein processing. Products, corresponding to cleavages identified in E. coli, were also detected in infected Sesbania leaves. Interestingly, though the sites are exactly the same in polyprotein 2ab, it got cleaved between Protease-VPg but not between VPg-RdRp. This indicates to a differential cleavage preference, governed probably by the conformation of 2ab. Also, the studies revealed that, in SeMV, processing is regulated by mode of cleavage and context of the cleavage site.
Resumo:
Mycobacterium tuberculosis readily activates both CD4+ and Vdelta2+ gammadelta T cells. Despite similarity in function, these T-cell subsets differ in the antigens they recognize and the manners in which these antigens are presented by M. tuberculosis-infected monocytes. We investigated mechanisms of antigen processing of M. tuberculosis antigens to human CD4 and gammadelta T cells by monocytes. Initial uptake of M. tuberculosis bacilli and subsequent processing were required for efficient presentation not only to CD4 T cells but also to Vdelta2+ gammadelta T cells. For gammadelta T cells, recognition of M. tuberculosis-infected monocytes was dependent on Vdelta2+ T-cell-receptor expression. Recognition of M. tuberculosis antigens by CD4+ T cells was restricted by the class II major histocompatibility complex molecule HLA-DR. Processing of M. tuberculosis bacilli for Vdelta2+ gammadelta T cells was inhibitable by Brefeldin A, whereas processing of soluble mycobacterial antigens for gammadelta T cells was not sensitive to Brefeldin A. Processing of M. tuberculosis bacilli for CD4+ T cells was unaffected by Brefeldin A. Lysosomotropic agents such as chloroquine and ammonium chloride did not affect the processing of M. tuberculosis bacilli for CD4+ and gammadelta T cells. In contrast, both inhibitors blocked processing of soluble mycobacterial antigens for CD4+ T cells. Chloroquine and ammonium chloride insensitivity of processing of M. tuberculosis bacilli was not dependent on the viability of the bacteria, since processing of both formaldehyde-fixed dead bacteria and mycobacterial antigens covalently coupled to latex beads was chloroquine insensitive. Thus, the manner in which mycobacterial antigens were taken up by monocytes (particulate versus soluble) influenced the antigen processing pathway for CD4+ and gammadelta T cells.
Resumo:
In this paper, an achievable rate region for the three-user discrete memoryless interference channel with asymmetric transmitter cooperation is derived. The three-user channel facilitates different ways of message sharing between the transmitters. We introduce a manner of noncausal (genie aided) unidirectional message-sharing, which we term cumulative message sharing. We consider receivers with predetermined decoding capabilities, and define a cognitive interference channel. We then derive an achievable rate region for this channel by employing a coding scheme which is a combination of superposition and Gel'fand-Pinsker coding techniques.
Resumo:
Titanium alloys like Ti-6A-4V are the backbone materials for aerospace, energy and chemical industries. Hypoeutectic boron addition to Ti-6Al-4V alloy produces a reduction in as-cast grain size by roughly an order of magnitude resulting in the possibility of avoiding ingot breakdown step and thereby reducing the processing cost. In the present study, ISM processed as-cast boron added Ti-6Al-4V alloy is deformed in (alpha+beta)-phase field, where alpha-lath bending seemed to be the dominating deformation mechanism.
Resumo:
The formation of an ω-Al7Cu2Fe phase during laser cladding of quasicrystal-forming Al65Cu23.3Fe11.7 alloy on a pure aluminium substrate is reported. This phase is found to nucleate at the periphery of primary icosahedral-phase particles. A large number of ω-phase particles form an envelope around the icosahedral phase. On the outer side, they form an interface with an agr-Al solid solution. Detailed transmission electron microscopic observations show that the ω phase exhibits an orientation relationship with the icosahedral phase. Analysis of experimental results suggests that the ω phase forms by precipitation on an icosahedral phase by heterogeneous nucleation and grows into the aluminium-rich melt until supersaturation is exhausted. The microstructural observations are explained in terms of available models of phase transformations.
Resumo:
The hot deformation behaviour of Mg–3Al alloy has been studied using the processing-map technique. Compression tests were conducted in the temperature range 250–550 °C and strain rate range 3 × 10−4 to 102 s−1 and the flow stress data obtained from the tests were used to develop the processing map. The various domains in the map corresponding to different dissipative characteristics have been identified as follows: (i) grain boundary sliding (GBS) domain accommodated by slip controlled by grain boundary diffusion at slow strain-rates (<10−3 s−1) in the temperature range from 350 to 450 °C, (ii) two different dynamic recrystallization (DRX) domains with a peak efficiency of 42% at 550 °C/10−1 s−1 and 425 °C/102 s−1 governed by stress-assisted cross-slip and thermally activated climb as the respective rate controlling mechanisms and (iii) dynamic recovery (DRV) domain below 300 °C in the intermediate strain rate range from 3 × 10−2 to 3 × 10−1 s−1. The regimes of flow instability have also been delineated in the processing map using an instability criterion. Adiabatic shear banding at higher strain rates (>101 s−1) and solute drag by substitutional Al atoms at intermediate strain rates (3 × 10−2 to 3 × 10−1 s−1) in the temperature range (350–450 °C) are responsible for flow instability. The relevance of these mechanisms with reference to hot working practice of the material has been indicated. The processing maps of Mg–3Al alloy and as-cast Mg have been compared qualitatively to elucidate the effect of alloying with aluminum on the deformation behaviour of magnesium.
Resumo:
Dense ZrB2-ZrC and ZrB2-ZrC x∼0.67 composites have been produced by reactive hot pressing (RHP) of stoichiometric and nonstoichiometric mixtures of Zr and B4C powders at 40 MPa and temperatures up to 1600 °C for 30 minutes. The role of Ni addition on reaction kinetics and densification of the composites has been studied. Composites of ∼97 pct relative density (RD) have been produced with the stoichiometric mixture at 1600 °C, while the composite with ∼99 pct RD has been obtained with excess Zr at 1200 °C, suggesting the formation of carbon deficient ZrC x that significantly aids densification by plastic flow and vacancy diffusion mechanism. Stoichiometric and nonstoichiometric composites have a hardness of ∼20 GPa. The grain sizes of ZrB2 and ZrC x∼0.67 are ∼0.6 and 0.4 μm, respectively, which are finer than those reported in the literature.
Resumo:
Understanding of the shape and size of different features of the human body from scanned data is necessary for automated design and evaluation of product ergonomics. In this paper, a computational framework is presented for automatic detection and recognition of important facial feature regions, from scanned head and shoulder polyhedral models. A noise tolerant methodology is proposed using discrete curvature computations, band-pass filtering, and morphological operations for isolation of the primary feature regions of the face, namely, the eyes, nose, and mouth. Spatial disposition of the critical points of these isolated feature regions is analyzed for the recognition of these critical points as the standard landmarks associated with the primary facial features. A number of clinically identified landmarks lie on the facial midline. An efficient algorithm for detection and processing of the midline, using a point sampling technique, is also presented. The results obtained using data of more than 20 subjects are verified through visualization and physical measurements. A color based and triangle skewness based schemes for isolation of geometrically nonprominent features and ear region are also presented. [DOI: 10.1115/1.3330420]
Resumo:
This study considers the scheduling problem observed in the burn-in operation of semiconductor final testing, where jobs are associated with release times, due dates, processing times, sizes, and non-agreeable release times and due dates. The burn-in oven is modeled as a batch-processing machine which can process a batch of several jobs as long as the total sizes of the jobs do not exceed the machine capacity and the processing time of a batch is equal to the longest time among all the jobs in the batch. Due to the importance of on-time delivery in semiconductor manufacturing, the objective measure of this problem is to minimize total weighted tardiness. We have formulated the scheduling problem into an integer linear programming model and empirically show its computational intractability. Due to the computational intractability, we propose a few simple greedy heuristic algorithms and meta-heuristic algorithm, simulated annealing (SA). A series of computational experiments are conducted to evaluate the performance of the proposed heuristic algorithms in comparison with exact solution on various small-size problem instances and in comparison with estimated optimal solution on various real-life large size problem instances. The computational results show that the SA algorithm, with initial solution obtained using our own proposed greedy heuristic algorithm, consistently finds a robust solution in a reasonable amount of computation time.
Resumo:
One of the problems encountered when photographic emulsions are used as the recording medium in holography is the appreciable time delay before the reconstruction can be viewed. This is largely due to the number of steps involved in processing and can be annoying in many applications.
Resumo:
This paper addresses the problem of resolving ambiguities in frequently confused online Tamil character pairs by employing script specific algorithms as a post classification step. Robust structural cues and temporal information of the preprocessed character are extensively utilized in the design of these algorithms. The methods are quite robust in automatically extracting the discriminative sub-strokes of confused characters for further analysis. Experimental validation on the IWFHR Database indicates error rates of less than 3 % for the confused characters. Thus, these post processing steps have a good potential to improve the performance of online Tamil handwritten character recognition.
Resumo:
One of the biggest challenges when considering polymer nanocomposites for electrical insulation applications lies in determining their electrical properties accurately, which in turn depend on several factors, primary being dispersion of particles in the polymer matrix. With this background, this paper reports an experimental study to understand the effects of different processing techniques on the dispersion of filler particles in the polymer matrix and their related effect on the dielectric properties of the composites. Polymer composite and nanocomposite samples for the study were prepared by mixing 10% by weight of commercially available TiO2 particles of two different sizes in epoxy using different processing methods. A considerable effect of the composite processing method could be seen in the dielectric properties of nanocomposites.
Resumo:
Processing maps developed on the basis of the Dynamic Materials Model provide valuable information that might help the metal working industry in solving problems related to workability and microstructural control in commercial alloys. In this research, the processing maps for an as-cast AZ31 magnesium alloy are presented. The results are validated via microstructural observations, clearly delineating safe and unsafe regimes for further process design of this alloy.
Resumo:
High-Tc superconducting thin films can be deposited and processed by pulsed and CW lasers, and a respectable materials technology for the Y-Ba-Cu-O superconductor is rapidly emerging. The pulsed laser deposition technique is simple because it produces films with compositions nearly identical to those of the target pellets. A larger variety of substrates can be used, compared to other deposition technologies, because of the relatively low temperature requirements. The laser deposition mechanism has been investigated. As-deposited superconducting films, epitaxial films with smooth surfaces, and multilayer structures with abrupt interfaces have been produced. The electrical transport properties can be changed locally using a focused argon-ion laser by modifying the oxygen stoichiometry. This laser writing can be erased by room-temperature exposure to an oxygen plasma. Other laser patterning methods such as material removal, melt-quench, and direct pattern transfer are being developed.
Resumo:
Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.