29 resultados para Coffee industry.
Resumo:
This paper analyses the efficiency and productivity growth of Electronics industry, which is considered one of the vibrant and rapidly growing manufacturing industry sub-sectors of India in the liberalization era since 1991. The main objective of the paper is to examine the extent and growth of Total Factor Productivity (TFP) and its components namely, Technical Efficiency Change (TEC) and Technological Progress (TP) and its contribution to total output growth. In this study, the electronics industry is broadly classified into communication equipments, computer hardware, consumer electronics and other electronics, with the purpose of performing a comparative analysis of productivity growth for each of these sub-sectors for the time period 1993-2004. The paper found that the sub-sectors have improved in terms of economies of scale and contribution of capital.The change in technical efficiency and technological progress moved in reverse directions. Three of the four industry witnessed growth in the output primarily due to TFPG and the contribution of input growth to output growth had been negative/negligible, except for Computer hardware where contribution from both input growth and TFPG to output growth were prominent. The paper explored the possible reasons that addressed the issue of low technical efficiency and technological progress in the industry.
Resumo:
Sport hunting is often proposed as a tool to support the conservation of large carnivores. However, it is challenging to provide tangible economic benefits from this activity as an incentive for local people to conserve carnivores. We assessed economic gains from sport hunting and poaching of leopards (Panthera pardus), costs of leopard depredation of livestock, and attitudes of people toward leopards in Niassa National Reserve, Mozambique. We sent questionnaires to hunting concessionaires (n = 8) to investigate the economic value of and the relative importance of leopards relative to other key trophy-hunted species. We asked villagers (n = 158) the number of and prices for leopards poached in the reserve and the number of goats depredated by leopard. Leopards were the mainstay of the hunting industry; a single animal was worth approximately U.S.$24,000. Most safari revenues are retained at national and international levels, but poached leopard are illegally traded locally for small amounts ($83). Leopards depredated 11 goats over 2 years in 2 of 4 surveyed villages resulting in losses of $440 to 6 households. People in these households had negative attitudes toward leopards. Although leopard sport hunting generates larger gross revenues than poaching, illegal hunting provides higher economic benefits for households involved in the activity. Sport-hunting revenues did not compensate for the economic losses of livestock at the household level. On the basis of our results, we propose that poaching be reduced by increasing the costs of apprehension and that the economic benefits from leopard sport hunting be used to improve community livelihoods and provide incentives not to poach.
Resumo:
We study the phenomenon of evaporation-driven self-assembly of a colloid suspension of silica microspheres in the interior region and away from the rim of the droplet on a glass plate. In view of the importance of achieving a large-area, monolayer assembly, we first realize a suitable choice of experimental conditions, minimizing the influence of many other competing phenomena that usually complicate the understanding of fundamental concepts of such self-assembly processes in the interior region of a drying droplet. Under these simplifying conditions to bring out essential aspects, our experiments unveil an interesting competition between ordering and compaction in such drying systems in analogy to an impending glass transition. We establish a re-entrant behavior in the order disorder phase diagram as a function of the particle density, such that there is an optimal range of the particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory.
Resumo:
Tiruvadi Sambasiva Venkatraman (TSV) was a plant breeder. In response to a call from Pundit Madan Mohan Malaviya, he made it his mission to develop high-yielding varieties of sugarcane for manufacturing sugar and making it available as a sweetening agent and an energy source for the malnourished children of India. Using Saccharum officinarum, then under cultivation in India, as the female parent, he artificially fertilized it with pollen from S. barberi, which grew wild in Coimbatore. After 4-5 recurrent backcrossings of S. officinarum Chi wild Sorghum spontaneum with S. officinarum as the female parent, TSV selected the `rare' interspecies hybrid cane varieties that resembled sugarcane and had approximately 2.5 cm thick juicy stems containing 16-18% sucrose - nearly 35 times more than what occurred in parent stocks. The hybrid canes matured quickly, were resistant to waterlogging, drought, and to the red-rot disease caused by Glomerella tucumanensis (Sordariomycetes: Glomerellaceae), and to the sereh-virus disease. Most importantly, they were amenable for propagation using stem cuttings. In recognition of the development of high-yielding sugarcane varieties, TSV was conferred the titles Rao Bahadur, Rao Sahib, and Sir by the British Government, and Padma Bhushan by the Republic of India. In the next few decades, consequent to TSV's work, India turned into the second largest sugar producer in the world, after Brazil. The hybrid sugarcane varieties developed are the foundational stocks for new sugarcane x bamboo hybrids, and for possible resistance to Puccinia megalocephala (Pucciniomycetes: Pucciniaceae) and Ustilago scitaminea (Ustilaginomycetes: Ustilaginaceae) using molecular techniques.
Resumo:
Food industries like biscuit and confectionary use significant amount of fossil fuel for thermal energy. Biscuit manufacturing in India is carried out both by organized and unorganized sector. The ratio of organized to unorganized sector is 60 : 40 (1). The total biscuit manufacturing in the organized sector India in 2008 was about 1.7 million metric tons (1). Accounting for the unorganized sector in India, the total biscuit manufacturing would have been about 2.9 million metric tons/annum. A typical biscuit baking is carried in a long tunnel kiln with varying temperature in different zones. Generally diesel is used to provide the necessary heat energy for the baking purpose, with temperature ranging from 190 C in the drying zone to about 300 C in the baking area and has to maintain in the temperature range of +/- 5 C. Typical oil consumption is about 40 litres per ton of biscuit production. The paper discusses the experience in substituting about 120 lts per hour kiln for manufacturing about 70 tons of biscuit daily. The system configuration consists of a 500 kg/hr gasification system comprising of a reactor, multicyclone, water scrubbers, and two blowers for maintaining the constant gas pressure in the header before the burners. Cold producer gas is piped to the oven located about 200 meters away from the gasifier. Fuel used in the gasification system is coconut shells. All the control system existing on the diesel burner has been suitably adapted for producer gas operation to maintain the total flow, A/F control so as to maintain the temperature. A total of 7 burners are used in different zones. Over 17000 hour of operation has resulted in replacing over 1800 tons of diesel over the last 30 months. The system operates for over 6 days a week with average operational hours of 160. It has been found that on an average 3.5 kg of biomass has replaced one liter of diesel.
Resumo:
Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 2646642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50 % of the total volume and 50-60 % of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of = 350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.