363 resultados para Coefficients
Resumo:
Fugacity coefficients and isothermal changes of enthalpy have been calculated and reported. The calculations cover a temperature range of 0° to 75°C. up to gas densities of 1.0 gram per cc. The generalized Benedict-Webb-Rubin constants evaluated from generalized PVT relations is found to predict the experimental data with an over-all absolute deviation of 3.1%. Second virial coefficients and potential energy parameters for Lennard-Jones (12-6) potential energy function are reported also.
Resumo:
Mass transfer coefficients have been determined for transfer into a highly viscous phase in a stirred tank involving high Schmidt numbers. The results have been used to compute mass transfer coefficients in the extraction of free fatty acids from oils using alcohol and show good agreement with experimental results
Resumo:
Motivated by developments in spacecraft dynamics, the asymptotic behaviour and boundedness of solution of a special class of time varying systems in which each term appears as the sum of a constant and a time varying part, are analysed in this paper. It is not possible to apply standard textbook results to such systems, which are originally in second order. Some of the existing results are reformulated. Four theorems which explore the relations between the asymptotic behaviour/boundedness of the constant coefficient system, obtained by equating the time varying terms to zero, to the corresponding behaviour of the time varying system, are developed. The results show the behaviour of the two systems to be intimately related, provided the solutions of the constant coefficient system approach zero are bounded for large values of time, and the time varying terms are suitably restrained. Two problems are tackled using these theorems.
Resumo:
In this study we present approximate analytical expressions for estimating the variation in multipole expansion coefficients as a function of the size of the apertures in the electrodes in axially symmetric (3D) and two-dimensional (2D) ion trap ion traps. Following the approach adopted in our earlier studies which focused on the role of apertures to fields within the traps, here too, the analytical expression we develop is a sum of two terms, A(n,noAperiure), the multipole expansion coefficient for a trap with no apertures and A(n,dueToAperture), the multipole expansion coefficient contributed by the aperture. A(n,noAperture) has been obtained numerically and A(n,dueToAperture) is obtained from the n th derivative of the potential within the trap. The expressions derived have been tested on two 3D geometries and two 2D geometries. These include the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A(2) to A(12), estimated by our analytical expressions, were compared with the values obtained numerically (using the boundary element method) for aperture sizes varying up to 50% of the trap dimension. In all the plots presented, it is observed that our analytical expression for the variation of multipole expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate of the deviation of our values from those obtained numerically for each multipole expansion coefficient, are seen to be largely in the range of 10-15%. The leading multipole expansion coefficient, A(2), however, is seen to be estimated very well by our expressions, with most values being within 1% of the numerically determined values, with larger deviations seen for the QIT and the LIT for large aperture sizes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present work the integral diffusion coefficients are estimated by using the diaphragm cell technique. The diffusion coefficients are measured at various compositions for two sets binary systems: one of cyclohexane and n-paraffinic alcohols and the other of methylcyclohexane and n-paraffinic alcohols. The alcohols used are seven members of homologous series of n-paraffinic alcohols from ethanol to octanol. The maximum possible error in the experimental diffusion coefficient could be 8% for both the cyclohexane-n-alkyl alcohol system and methylcyclohexane-n-alkyl alcohol system. A correlation for each of the two sets of binary systems is given. The maximum deviation in the correlations was less than 6.5 and 3.5% for cyclohexane-n-alkyl alcohols and methylcyclohexane-n-alkyl alcohols, respectively.
Resumo:
The mutual diffusion coefficients for binary liquid systems of benzene-n-alkyl alcohol at various compositions have been determined by the diaphragm cell method at 28-degrees-C. The alcohols used were the members of n-paraffinic alcohols ranging from C1 to C8. The maximum possible experimental error is 14%. The data were fitted with a generalized correlation, giving the deviation from the experimental data to within 2.75%, on average.
Resumo:
One of the most important dynamic properties required in the design of machine foundations is the stiffness or spring constant of the supporting soil. For a layered soil system, the stiffness obtained from an idealization of soils underneath as springs in series gives the same value of stiffness regardless of the location and extent of individual soil layers with respect to the base of the foundation. This paper aims to develop the importance of the relative positioning of soil layers and their thickness beneath the foundation. A simple and approximate procedure called the weighted average method has been proposed to obtain the equivalent stiffness of a layered soil system knowing the individual values of the layers, their relative position with respect to foundation base, and their thicknesses. The theoretically estimated values from the weighted average method are compared with those obtained by conducting field vibration tests using a square footing over different two- and three-layered systems and are found to be very good. The tests were conducted over a range of static and dynamic loads using three different materials. The results are also compared with the existing methods available in the literature.
Resumo:
In 1984 Jutila [5] obtained a transformation formula for certain exponential sums involving the Fourier coefficients of a holomorphic cusp form for the full modular group SL(2, Z). With the help of the transformation formula he obtained good estimates for the distance between consecutive zeros on the critical line of the Dirichlet series associated with the cusp form and for the order of the Dirichlet series on the critical line, [7]. In this paper we follow Jutila to obtain a transformation formula for exponential sums involving the Fourier coefficients of either holomorphic cusp forms or certain Maass forms for congruence subgroups of SL(2, Z) and prove similar estimates for the corresponding Dirichlet series.
Resumo:
Backlund transformations relating the solutions of linear PDE with variable coefficients to those of PDE with constant coefficients are found, generalizing the study of Varley and Seymour [2]. Auto-Backlund transformations are also determined. To facilitate the generation of new solutions via Backlund transformation, explicit solutions of both classes of the PDE just mentioned are found using invariance properties of these equations and other methods. Some of these solutions are new.
Resumo:
Bi3+ ions substituting at Ba-sites in a limited concentration range with another donor dopant occupying the Ti-sites in polycrystalline BaTiO3 enhanced the positive temperature coefficient of resistance (PTCR) by over seven orders of magnitude. These ceramics did not require normal post sinter annealing or a change to an oxygen atmosphere during annealing. These ceramics had low porosities coupled with better stabilities to large applied electric fields and chemically reducing atmospheres. Bi3+ ions limited the grain growth to less than 8 mum in size, they enhanced the concentration of acceptor-type trap centres at the grain-boundary-layer regions and maintained complete tetragonality at low grain sizes in BaTiO3 ceramics.
Resumo:
The logarithm of activity coefficients of the components of the ternary system is derived based on the Maclaurin infinite series, which is expressed in terms of the integral property of the system and subjected to appropriate boundary conditions. The derivation of the functions involves extensive summation of various infinite series pertaining to the first-order interaction coefficients that have been shown completely to remove any truncational error. Since the conventional equations involving interaction coefficients are internally inconsistent, a consistent form of the partial functions is developed in the article using the technique just described. The thermodynamic consistency of the functions based on the Maxwell and the Gibbs-Duhem relations has been established. The derived values of the logarithmic activity coefficients of the components have been found to be in agreement with the thermodynamic data of the Fe-Cr-Ni system at 1873 K and have been found to be independent of the compositional paths.
Resumo:
We build on the formulation developed in S. Sridhar and N. K. Singh J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients alpha(il) and eta(iml) are derived. We prove that when the velocity field is nonhelical, the transport coefficient alpha(il) vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X-3 and time tau; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Radler, M. Rheinhardt, and P. J. Kapyla Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor eta(ij) (tau). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.