88 resultados para Civilian Conservation Corps (U.S.)
Resumo:
The Upwind-Least Squares Finite Difference (LSFD-U) scheme has been successfully applied for inviscid flow computations. In the present work, we extend the procedure for computing viscous flows. Different ways of discretizing the viscous fluxes are analysed for the positivity, which determines the robustness of the solution procedure. The scheme which is found to be more positive is employed for viscous flux computation. The numerical results for validating the procedure are presented.
Resumo:
We have presented a new low dissipative kinetic scheme based on a modified Courant Splitting of the molecular velocity through a parameter φ. Conditions for the split fluxes derived based on equilibrium determine φ for a one point shock. It turns out that φ is a function of the Left and Right states to the shock and that these states should satisfy the Rankine-Hugoniot Jump condition. Hence φ is utilized in regions where the gradients are sufficiently high, and is switched to unity in smooth regions. Numerical results confirm a discrete shock structure with a single interior point when the shock is aligned with the grid.
Resumo:
Three conformationally locked fluorinated polycyclitols have been specially crafted on a rigid trans-decalin backbone, employing a surprisingly facile pyridine-poly(hydrogen fluoride)-mediated stereospecific epoxide ring opening as the key reaction. Molecula design of the three fluorinated probes under study focused on providing an efficient platform for (a) evaluating the ability of covalently bonded fluorine, vis-a-vis the isosteric hydroxy group, to act as a H-bond acceptor and (b) examining the possibility for an organic fluorine moiety, placed suitably in a spatially invariant position, to engage an 1,3-diaxial OH functionality in a purported intramolecular O-H center dot center dot center dot F hydrogen bond. The present endeavour reveals that C(sp(3))-F center dot center dot center dot H-C(sp(3)) hydrogen bonds, though weak and lesser investigated, can indeed be observed and supramolecular recognition motifs, involving such interactions, can be conserved even in crystal structures laden with stronger O-H center dot center dot center dot O hydrogen bonds.
Resumo:
Since a majority of residential and industrial building hot water needs are around 50 degrees C, an integrated solar water heater could provide a bulk source that blends collection and storage into one unit. This paper describes the design, construction and performance test results of one such water-heating device. The test unit has an absorber area of 1.3 m(2) and can hold 1701 of water, of which extractable volume per day is 1001. Its performance was evaluated under various typical operating conditions. Every morning at about 7:00 a.m., 1001 of hot water were drawn from the sump and replaced with cold water from the mains. Although, during most of the days, the peak temperatures of water obtained are between 50 and 60 degrees C, the next morning temperatures were lower at 45-50 degrees C. Daytime collection efficiencies of about 60% and overall efficiencies of about 40% were obtained. Tests were conducted with and without stratification. Night radiation losses were reduced by use of a screen insulation.
Resumo:
Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.
Resumo:
System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication K. R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R-3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 x 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Ultrahigh-temperature (UHT) granulites of the central Highland Complex, Sri Lanka, underwent some of the highest known peak temperatures of crustal metamorphism. Zircon and monazite U-Pb systems in granulites near Kandy, the highest grade region (similar to 1050 degrees C; 0.9 GPa), preserve both a record of the timing of prograde and retrograde phases of UHT metamorphism and evidence for the ages of older protolith components. Zircon grains from a quartz-saturated granulite containing relics of the peak UHT assemblage have remnant detrital cores with dates of ca. 2.5-0.83 Ga. Date clusters of ca. 1.7 and 1.04-0.83 Ga record episodes of zircon growth in the source region of the protolith sediment. Two generations of overgrowths with contrasting Th/U record metamorphic zircon growth at 569 +/- 5 and 551 +/- 7 Ma, probably in the absence and presence of monazite, respectively. The age of coexisting metamorphic monazite (547 +/- 7 Ma) is indistinguishable from that of the younger, low-Th/U zircon overgrowths. Zircon from a quartz-undersaturated monazite-absent UHT granulite with a mainly retrograde assemblage is mostly metamorphic (551 +/- 5 Ma). The ca. 570 Ma zircon overgrowths in the quartz-saturated granulite probably record partial melting just before or at the metamorphic peak. The ca. 550 Ma zircon in both rocks, and the ca. 550 Ma monazite in the quartz-saturated sample, record post-peak isothermal decompression. A possible model for this pressure-temperature-time evolution is ultrahot collisional orogeny during the assembly of Gondwana, locally superheated by basaltic underplating, followed by fast extensional exhumation.
Resumo:
The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as rhick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size. Chemical and isotopic (Sr-87/Sr-86) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the Sr-87/Sr-86 signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations. The Sr, U and Mg contents and the (U-234/U-238) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high (U-234/U-238) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 +/- 0.84 kyr to 7.5 +/- 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper may be considered as a sequel to one of our earlier works pertaining to the development of an upwind algorithm for meshless solvers. While the earlier work dealt with the development of an inviscid solution procedure, the present work focuses on its extension to viscous flows. A robust viscous discretization strategy is chosen based on positivity of a discrete Laplacian. This work projects meshless solver as a viable cartesian grid methodology. The point distribution required for the meshless solver is obtained from a hybrid cartesian gridding strategy. Particularly considering the importance of an hybrid cartesian mesh for RANS computations, the difficulties encountered in a conventional least squares based discretization strategy are highlighted. In this context, importance of discretization strategies which exploit the local structure in the grid is presented, along with a suitable point sorting strategy. Of particular interest is the proposed discretization strategies (both inviscid and viscous) within the structured grid block; a rotated update for the inviscid part and a Green-Gauss procedure based positive update for the viscous part. Both these procedures conveniently avoid the ill-conditioning associated with a conventional least squares procedure in the critical region of structured grid block. The robustness and accuracy of such a strategy is demonstrated on a number of standard test cases including a case of a multi-element airfoil. The computational efficiency of the proposed meshless solver is also demonstrated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We point out possibilities for exotic physics in barium bismuthates, from a detailed study of the negative-U, extended-Hubbard model proposed for these systems. We emphasize the different consequences of electronic and phononic mechanisms for negative U. We show that, for an electronic mechanism, the semiconducting phases must be unique, with their transport properties dominated by charge ± 2e Cooperon bound states. This can explain the observed difference between the optical and transport gaps. We propose other experimental tests for this novel mechanism of charge transport.
Resumo:
Indigenous peoples with a historical continuity of resource-use practices often possess a broad knowledge base of the behavior of complex ecological systems in their own localities. This knowledge has accumulated through a long series of observations transmitted from generation to generation. Such ''diachronic'' observations can be of great value and complement the ''synchronic''observations on which western science is based. Where indigenous peoples have depended, for long periods of time, on local environments for the provision of a variety of resources, they have developed a stake in conserving, and in some cases, enhancing, biodiversity. They are aware that biological diversity is a crucial factor in generating the ecological services and natural resources on which they depend. Some indigenous groups manipulate the local landscape to augment its heterogeneity, and some have been found to be motivated to restore biodiversity in degraded landscapes. Their practices for the conservation of biodiversity were grounded in a series of rules of thumb which are apparently arrived at through a trial and error process over a long historical time period. This implies that their knowledge base is indefinite and their implementation involves an intimate relationship with the belief system. Such knowledge is difficult for western science to understand. It is vital, however, that the value of the knowledge-practice-belief complex of indigenous peoples relating to conservation of biodiversity is fully recognized if ecosystems and biodiversity are to be managed sustainably. Conserving this knowledge would be most appropriately accomplished through promoting the community-based resource-management systems of indigenous peoples.