31 resultados para Chromophores


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of photo-cross-linkable main-chain liquid crystalline polymers (PMCLCPs) containing bis(benzylidene)cycloallranone groups have been synthesized and studied for their liquid crystalline and photochemical properties. The bis(benzylidene)cycloalkanone group in the chain functions both as a mesogen and as a photoreactive center. All of the polymers exhibit a nematic mesophase. Two kinds of photoreactions, namely, photoisomerization and photo-cross-linking, operate in these polymers. Above Tu at the initial stages of irradiation, photoisomerization predominates the cross-linking, which resulta in the disruption of the chromophore aggregates. Below T8, because of the restricted mobility of the chains, only cross-linking takes place. Studies on the model compound, bis(benzylidene)cyclopentanone, confii the above observations and demonstrate further that the cross-linking proceeds by the 2r + 2r cycloaddition reaction of the bis(benzylidene)cycloallranone moieties. The cross-linking rate decreases with increase in the size of the cycloalkanone ring. Heating the solution cast polymer fii results in the ordered aggregation of the chromophores just above TI and also at the crystal to crystal transition temperature, which facilitates the phobcross-linking reactions. In the isotropic phase, the random orientation of the chromophores drastically curtails the cross-linking rata

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnitude and stability of the induced dipolar orientation of 2-methyl-4-nitroaniline (MNA)/poly(methyl methacrylate) (PMMA) guest/host system is investigated. The chromophores are aligned using both the corona discharge and contact electrode poling techniques. The magnitude of order parameter (also an indicator for the second order nonlinear susceptibility) is measured by recording absorbances of the poled (by the two different techniques) and unpoled PMMA films at different concentrations of MNA. Under the same conditions the corona poling technique creates a higher alignment of molecules along the field direction. The time dependence of the second harmonic intensity of the MNA/PMMA film prepared by the two techniques can be described by a Kohlrausch-Williams-Watts stretched exponential. The temperature dependence of the decay time constant is found to generally follow a modified Williams-Landel-Ferry (WLF) or Vogel-Tamann-Fulcher (VTF) equation. The glass transition temperature seems to be the single most important parameter for determining the relaxation time tau(T).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of new photo-crosslinkable main-chain liquid-crystalline polymers containing bis(benzylidene)cycloalkanone units have been studied. These units in the polymers function as mesogens as well as photoactive centres. Polyesters with three different bis(4-hydroxybenzylidene)cycloalkanones corresponding to three cycloalkanones, namely cyclopentanone, cyclohexanone and cycloheptanone, have been prepared. Three dicarboxylic acids with ether linkages, which were derived from oligoethylene oxides, namely triethylene glycol, tetraethylene glycol and pentaethylene glycol, have been used as spacers in these polymers. Polymerization was carried out by both solution and interfacial polycondensation; the latter method gave high-molecular-weight polymers. Structural characterizations were done by ultra-violet, infra-red and H-1 nuclear magnetic resonance spectroscopy. Liquid-crystalline properties were studied by differential scanning calorimetry and polarized-light optical microscopy. These polymers show a nematic mesophase. Liquid-crystalline transition temperatures were correlated with polymer structure. The decrease in transition temperature with increase in cycloalkanone ring size was explained in terms of the change in geometrical anisotropy of bis(benzylidene)cycloalkanone units. MNDO (modified neglect of differential overlap) calculations were performed on the model compounds, bis(4-acetyloxybenzylidene)cycloalkanone to elucidate the geometrical variation of the mesogenic units with cycloalkanone ring size. Studies of photolysis reveal the two kinds of photoreactions that proceed in these polymer systems, namely photoisomerization and photo-crosslinking. The former reaction disrupts the parallel stacking of the chromophores and is reflected as an increase in the ultra-violet spectral intensity. The favourability of these two reactions depends on the mobility of the polymer chains. When the photolysis was done below T-g, photo-crosslinking dominates over photoisomerization. Above T-g, photoisomerization is followed by photo-crosslinking. The photosensitivity of the polymers decreases with increase in size of the cycloalkanone ring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through a systematic study of several diphenylcyclopropane derivatives, we have inferred that the cations present within a zeolite control the excited-state chemistry of these systems. In the parent 1,2-diphenylcylopropane, the cation binds to the two phenyl rings in a sandwich-type arrangement, and such a mode of binding prevents cis-to-trans isomerization. Once an ester or amide group is introduced into the system (derivatives of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid), the cation binds to the carbonyl group present in these chromophores and such a binding has no influence on the cis-trans isomerization process. Cation-reactant structures computed at density functional theory level have been very valuable in rationalizing the observed photochemical behavior of diphenylcyclopropane derivatives included in zeolites. While the parent system, 1,2-diphenyleylopropane, has been extensively investigated in the context of chiral induction in solution, owing to its failure to isomerize from cis to trans, the same could not be investigated in zeolites. However, esters of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid could be studied within zeolites in the context of chiral induction. Chiral induction as high 20% ee and 55% de has been obtained with selected systems. These numbers, although low, are much higher than what has been obtained in solution with the same system or with the parent system by other investigators (maximum similar to10% ee).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several unsymmetrically substituted aromatic donor acceptor disulfides have been synthesized and analysed for their second order nonlinear optical properties. These molecules exhibit moderately high first hyperpolarizability (beta) with excellent transparency in the visible region. Most of the unsymmetrical disulfides have a cut-off wavelength below 420 nm. Calculations show that the molecules have an asymmetric charge distribution around the disulfide bond which is responsible for their high beta values. These results provide motivation for the design and synthesis of nonlinear optical chromophores with multiple disulfide bonds for large second order nonlinearity and excellent visible transparency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quinoxaline antibiotics (Fig. 1a, b) form a useful group of compounds for the study of drug–nucleic acid interactions1,2. They consist of a cross-bridged cyclic octadepsipeptide, variously modified, bearing two quinoxaline chromophores. These antibiotics intercalate bifunctionally into DNA2,3 probably via the narrow groove, forming a complex in which, most probably, two base pairs are sandwiched between the chromophores4,5. Depending on the nature of their sulphur-containing cross-bridge and modifications to their amino acid side chains, they display characteristic patterns of nucleotide sequence selectivity when binding to DNAs of different base composition and to synthetic polydeoxynucleotides4,6,7. This specificity has been tentatively ascribed to specific hydrogen-bonding interactions between functional groups in the DNA and complementary moieties on the peptide ring2,4,5. Variations in selectivity have been attributed both to changes in the conformation of the peptide backbone6 and no modifications of the cross-bridge7. These suggestions were made, however, in the absence of firm knowledge about the three-dimensional structure and conformation of the antibiotic molecules. We now report the X-ray structure analysis of the synthetic analogue of the antibiotic triostin A, TANDEM (des-N-tetramethyl triostin A) (Fig. 1c), which binds preferentially to alternating adenine-thymine sequences7. The X-ray structure provides a starting point for exploring the origin of this specificity and suggests possible models for the binding of other members of the quinoxaline series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Joint experimental and theoretical work is presented on two quadrupolar D-pi-A-pi-D chromophores characterized by the same bulky donor (D) group and two different central cores. The first chromophore, a newly synthesized species with a malononitrile-based acceptor (A) group, has a V-shaped structure that makes its absorption spectrum very broad, covering most of the visible region. The second chromophore has a squaraine-based core and therefore a linear structure, as also evinced from its absorption spectra. Both chromophores show an anomalous red shift of the absorption band upon increasing solvent polarity, a feature that is ascribed to the large, bulky structure of the moleCules. For these molecules, the basic description of polar solvation in terms of a uniform reaction field fails. Indeed, a simple extension of the model to account for two independent reaction fields associated with the two molecular arms quantitatively reproduces the observed linear absorption and fluorescence as well as fluorescence anisotropy spectra, fully rationalizing their nontrivial dependence on solvent polarity. The model derived from the analysis of linear spectra is adopted to predict nonlinear spectra and specifically hyper-Rayleigh scattering and two-photon absorption spectra. In polar solvents, the V-shaped chromophore is predicted to have a large HRS response in a wide spectral region (approximately 600-1300 nm). Anomalously large and largely solvent-dependent HRS responses for the linear chromophores are ascribed to symmetry lowering induced by polar solvation and amplified in this bulky system by the presence of two reaction fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Facile synthesis of two new dimesitylboryl appended BODIPYs is reported. The two dyads have similar fluorescent chromophores but differ in their molecular conformations. They exhibit dual fluorescence, intramolecular energy transfer between boryl and BODIPY chromophores and different fluorescence responses (emission enhancement and quenching) upon fluoride binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the synthesis, crystal structures, and optical absorption spectra of transition metal substituted spiroffite derivatives, Zn2-xMxTe3O8 (M-II = Co, Ni, Cu; 0 < x <= 1.0). The oxides are readily synthesized by solid state reaction of stoichiometric mixtures of the constituent binaries at 620 degrees C. Reitveld refinement of the crystal structures from powder X-ray diffraction (XRD) data shows that the Zn/MO6 octahedra are strongly distorted, as in the parent Zn2Te3O8 structure, consisting of five relatively short Zn/M-II-O bonds (1.898-2.236 angstrom) and one longer Zn/M-II-O bond (2.356-2.519 angstrom). We have interpreted the unique colors and the optical absorption/diffuse reflectance spectra of Zn2-xMxTe3O8 in the visible, in terms of the observed/irregular coordination geometry of the Zn/M-II-O chromophores. We could not however prepare the fully substituted M2Te3O8 (M-II = Co, Ni, Cu) by the direct solid state reaction method. Density Functional Theory (DFT) modeling of the electronic structure of both the parent and the transition metal substituted derivatives provides new insights into the bonding and the role of transition metals toward the origin of color in these materials. We believe that transition metal substituted spiroffites Zn2-xMxTe3O8 reported here suggest new directions for the development of colored inorganic materials/pigments featuring irregular/distorted oxygen coordination polyhedra around transition metal ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resonance Raman spectroscopy is a powerful analytical tool for detecting and identifying analytes, but the associated strong fluorescence background severely limits the use of the technique. Here, we show that by attaching beta-cyclodextrin (beta-CD) cavities to reduced graphene-oxide (rGO) sheets we obtain a water dispersible material (beta-CD: rGO) that combines the hydrophobicity associated with rGO with that of the cyclodextrin cavities and provides a versatile platform for resonance Raman detection. Planar aromatic and dye molecules that adsorb on the rGO domains and nonplanar molecules included within the tethered beta-CD cavities have their fluorescence effectively quenched. We show that it is possible using the water dispersible beta-CD: rGO sheets to record the resonance Raman spectra of adsorbed and included organic chromophores directly in aqueous media without having to extract or deposit on a substrate. This is significant, as it allows us to identify and estimate organic analytes present in water by resonance Raman spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological nanopores provide optimum dimensions and an optimal environment to study early aggregation kinetics of charged polyaromatic molecules in the nano-confined regime. It is expected that probing early stages of nucleation will enable us to design a strategy for supramolecular assembly and biocrystallization processes. Specifically, we have studied translocation dynamics of coronene and perylene based salts, through the alpha-hemolysin (alpha-HL) protein nanopore. The characteristic blocking events in the time-series signal are a function of concentration and bias voltage. We argue that different blocking events arise due to different aggregation processes as captured by all atomistic molecular dynamics (MD) simulations. These confinement induced aggregations of polyaromatic chromophores during the different stages of translocation are correlated with the spatial symmetry and charge distribution of the molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A facile synthetic route for a new class of organoborane compounds (Mes)(2)B-arene-acacH and (Mes)(2)Barene-acacBF2 (Mes = mesityl and arene = C6H4 or C6Me4) is reported. The new dyads exhibit intriguing photophysical properties. A small structural change in spacer connecting the two chromophores leads to fine tuning of photophysical properties. The dyad containing 2,3,5,6-tetramethyl phenyl spacer acts as a selective ``turn-on'' chemodosimetric sensor for cyanide ion. Steric crowding around the boron centre significantly alters anion binding events. From NMR titration studies it is established that fluoride and cyanide follow different binding mechanisms which lead to intriguing optical properties in the reported probes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new V-shaped boryl-BODIPY dyads (1-3) were synthesized and structurally characterized. Compounds 1-3 are structurally close molecular siblings differing only in the number of methyl substituents on the BODIPY moiety that were found to play a major role in determining their photophysical behavior. The dyads show rare forms of multiple-channel emission characteristics arising from different extents of electronic energy transfer (EET) processes between the two covalently linked fluorescent chromophores (borane and BODIPY units). Insights into the origin and nature of their emission behavior were gained from comparison with closely related model molecular systems and related photophysical investigations. Because of the presence of the Lewis acidic triarylborane moiety, the dyads function as highly selective and sensitive fluoride sensors with vastly different response behaviors. When fluoride binds to the tricoordinate borane center, dyad 1 shows gradual quenching of its BODIPY-dominated emission due to the ceasing of the (borane to BODIPY) EET process. Dyad 2 shows a ratiometric fluorescence response for fluoride ions. Dyad 3 forms fluoride-induced nanoaggregates that result in fast and effective quenching of its fluorescence intensity just for similar to 0.3 ppm of analyte (i.e., 0.1 equiv 0.26 ppm of fluoride). The small structural alterations in these three structurally close dyads (1 - 3) result in exceptionally versatile and unique photophysical behaviors and remarkably diverse responses toward a single analyte, i.e., fluoride ion.