188 resultados para Chemistry, Organic.
Resumo:
The principle of microscopic reversibility is one of the few generalising principles used in organic chemistry which have their roots in the fundamental laws of thermodynamics. It has, therefore, been highly popular. However, although the principle has some important uses, its general application is not without pitfalls. The principle is easy to misunderstand and to misapply: indeed, some of its formulations are semantically dubious. The principle is most dangerous when used as a charm, for it is more subtle than some of its formulations suggest. But above all, the principle may not be used for deducing or disproving the mechanism of a reaction, except when the mechanism in the reverse direction is known independently. For, such use is, perhaps, the deadliest misapplication.
Resumo:
The utility of tetrathiomolybdate in a variety of organic transformations is presented in this account. The sulfur transfer ability of tetrathiomolybdate is exploited in the synthesis of organic disulfides under mild reaction conditions. The induced internal redox reactions associated with tetrathiomolybdate have been thoroughly exploited in developing various methodologies, which include the reduction of organic azides, synthesis of diselenides, cyclic imines, thioamides, and thiolactams. In addition, novel deprotection strategies using tetrathiomolybdate have been developed to cleave the propargyl and propargyloxy carbonyl (POC) protecting groups. Tetrathiomolybdate mediated tandem sulfur transfer-reduction-Michael reactions have been applied to the synthesis of sulfur containing bicyclic systems. Furthermore, the reactions in the solid state and the reactions in water medium assisted by tetrathiomolybdate have greatly simplified the synthesis of organic disulfides.
Resumo:
The metal organic frameworks (MOFs) have evolved to be an important family and a corner stone for research in the area of inorganic chemistry. The progress made since 2000 has attracted researchers from other disciplines to actively engage themselves in this area. This cooperative synergy of different scientific believes have provided important edge and spread to the chemistry of metal-organic frameworks. The ease of synthesis coupled with the observation of properties in the areas of catalysis, sorption, separation, luminescence, bioactivity, magnetism, etc., are a proof of this synergism. In this article, we present the recent developments in this area.
Resumo:
In recent years there has been considerable interest in developing new types of gelators of organic solvents.1 Despite the recent advances, a priori design of a gelator for gelling a given solvent has remained a challenging task. Various noncovalent interactions like hydrogen-bonding,2 metal coordination3 etc. have been used as the driving force for the gelation process. A special class of cholesterol-based gelators were reported by Weiss,4 and by Shinkai.5 Gels derived from these molecules have been used for chiral recognition/sensing,6 for studying photo- and metal-responsive functions,7 and as templates to make hollow fiber silica.8 Other types of organogels have been used for designing polymerized 9 and reverse aerogels,10 and in molecular imprinting.11 Hanabusa’s group has recently reported organogels with a bile acid derivative.12 This has prompted us to disclose our results on a novel electron donor–acceptor (EDA) interaction mediated two-component13 gelator system based on the bile acid14 backbone.
Resumo:
Synthetic routes leading to 12 L-phenylalanine based mono- and bipolar derivatives (1-12) and an in-depth study of their structure-property relationship with respect to gelation have been presented. These include monopolar systems such as N-[(benzyloxy)carbonyl]-L-phenylalanine-N-alkylamides and the corresponding bipolar derivatives with flexible and rigid spacers such as with 1,12-diaminododecane and 4,4'-diaminodiphenylmethane, respectively. The two ends of the latter have been functionalized with N-[(benzyloxy)carbonyl]-L-phenylalanine units via amide connection. Another bipolar molecule was synthesized in which the middle portion of the hydrocarbon segment contained polymerizable diacetylene unit. To ascertain the role of the presence of urethane linkages in the gelator molecule protected L-phenylalanine derivatives were also synthesized in which the (benzyloxy)carbonyl group has been replaced with (tert-butyloxy)carbonyl, acetyl, and benzoyl groups, respectively. Upon completion of the synthesis and adequate characterization of the newly described molecules, we examined the aggregation and gelation properties of each of them in a number of solvents and their mixtures. Optical microscopy and electron microscopy further characterized the systems that formed gels. Few representative systems, which showed excellent gelation behavior was, further examined by FT-IR, calorimetric, and powder X-ray diffraction studies. To explain the possible reasons for gelation, the results of molecular modeling and energy-minimization studies were also included. Taken together these results demonstrate the importance of the presence of (benzyloxy)carbonyl unit, urethane and secondary amide linkages, chiral purities of the headgroup and the length of the alkyl chain of the hydrophobic segment as critical determinants toward effective gelation.
Resumo:
A two-state model allowing for size disparity between the solvent and the adsorbate is analysed to derive the adsorption isotherm for electrosorption of organic compounds. Explicity, the organic adsorbate is assumed to occupy "n" lattice sites at the interface as compared to "one" by the solvent. The model parameters are the respective permanent and induced dipole moments apart from the nearest neighbour distance. The coulombic interactions due to permanent and induced dipole moments, discreteness of charge effects, and short-range and specific substrate interactions have all been incorporated. The adsorption isotherm is then derived using mean field approximation (MFA) and is found to be more general than the earlier multi-site versions of Bockris and Swinkels, Mohilner et al., and Bennes, as far as the entropy contributions are concerned. The role of electrostatic forces is explicity reflected in the adsorption isotherm via the Gibbs energy of adsorption term which itself is a quadratic function of the electrode charge-density. The approximation implicit in the adsorption isotherm of Mohilner et al. or Bennes is indicated briefly.
Resumo:
This work reports on the synthesis of a wide range of ferrocenyl-substituted amino acids and peptides in excellent yield. Conjugation is established via copper-catalyzed 1,3-dipolar cycloaddition. Two complementary strategies were employed for conjugation, one involving cycloaddition of amino acid derived azides with ethynyl ferrocene 1 and the other involves cycloaddition between amino acid derived alkynes with ferrocene-derived azides 2 and 3. Labeling of amino acids at multiple sites with ferrocene is discussed. A new route to 1,1'-unsymmetrically substituted ferrocene conjugates is reported. A novel ferrocenophane 19 is accessed via bimolecular condensation of amino acid derived bis-alkyne 9b with the azide 2. The electrochemical behavior of some selected ferrocene conjugates has been studied by cyclic voltammetry.
Resumo:
A simple three-state model permitting two different configurational states for the solvent, together with one for the organic adsorbate, is analysed to derive the adsorption isotherm. The implications of this model regarding pseudo-two-state and pseudo-Frumkin adsorption isotherms are indicated. A critique of the earlier theory of Bockris, Devanathan and Müller is presented in brief.
Resumo:
The charge at which adsorption of orgamc compounds attains a maximum ( \sigma MAX M) at an electrochenucal interface is analysed using several multi-state models in a hierarchical manner The analysis is based on statistical mechamcal results for the following models (A) two-state site parity, (B) two-state muhl-slte, and (C) three-state site parity The coulombic interactions due to permanent and reduced dipole effects (using mean field approximation), electrostatic field effects and specific substrate interactions have been taken into account. The simplest model in the hierarchy (two-state site parity) yields the exphcit dependence of ( \sigma MAX M) on the permanent dipole moment, polarizability of the solvent and the adsorbate, lattice spacing, effective coordination number, etc Other models in the baerarchy bring to hght the influence of the solvent structure and the role of substrate interactions, etc As a result of this approach, the "composition" of oM.x m terms of the fundamental molecular constants becomes clear. With a view to use these molecular results to maxamum advantage, the derived results for ( \sigma MAX M) have been converted into those involving experimentally observable parameters lake Co, C 1, E N, etc Wherever possible, some of the earlier phenomenologlcal relations reported for ( \sigma MAX M), notably by Parsons, Damaskm and Frumkln, and Trasattl, are shown to have a certain molecular basis, vlz a simple two-state sate panty model.As a corollary to the hxerarcbacal modelling, \sigma MAX M and the potential corresponding to at (Emax) are shown to be constants independent of 0max or Corg for all models The lmphcatlon of our analysis f o r OmMa x with respect to that predicted by the generalized surface layer equation (which postulates Om~ and Ema x varlaUon with 0) is discussed in detail Finally we discuss an passing o M. and the electrosorptlon valency an this context.
Resumo:
The relations for the inner layer potential &fference (E) in the presence of adsorbed orgamc molecules are derived for three hterarchlcal models, m terms of molecular constants like permanent &pole moments, polarlzablhtles, etc It is shown how the experimentally observed patterns of the E vs 0 plots (hnear m all ranges of $\sigma^M$, non-linear in one or both regions of o M, etc ) can be understood in a serm-quantltatlve manner from the simplest model in our hierarchy, viz the two-state site panty version Two-state multi-site and three-state (sxte panty) models are also analysed and the slope (3E/80),,M tabulated for these also The results for the Esm-Markov effect are denved for all the models and compared with the earlier result of Parsons. A comparison with the GSL phenomenologlcal equation is presented and its molecular basis, as well as the hmltatlons, is analysed. In partxcular, two-state multa-slte and three-state (site panty) models yield E-o M relations that are more general than the "umfied" GSL equation The posslblhty of vaewlng the compact layer as a "composite medium" with an "effective dlelectnc constant" and obtaimng novel phenomenological descnptions IS also indicated.
Resumo:
Enthalpy changes of the crystal-plastic and plastic-liquid transitions are related to the temperature range of stability of the plastic phase. Thermodynamics of the plastic state of binary mixtures have been examined. Infrared correlation times, τc, and activation energies have been measured for a few molecules in the plastic state. Molecular tumbling times, τt, have also been measured employing ESR spectra of a spin-probe. Plots of log τc(τt) 1/T are continuous through the plastic-liquid transition. Activation energies for molecular motion seem to vary in the same direction as the ΔH of the plastic-crystal transition. Infrared correlation times of solute molecules in binary solutions in the plastic and the liquid states show interesting variations with solute concentration.
Resumo:
A new two-dimensional 3d-4f mixed-metal mixed dicarboxylate (homocyclic and heterocyclic) of the formula [Gd2(H2O)2Ni(H2O)2(1,2-bdc)2(2,5-pydc)2] 3 8H2O (1; 1,2-H2bdc = 1,2-benzenedicarboxylic acid and 2,5-H2pydc = 2,5- pyridinedicarboxylic acid) has been prepared by employing the hydrothermal method. The structure has infinite onedimensional-Gd-O-Gd- chains formed by the edge-shared GdO9 polyhedral units, resulting exclusively from the connectivity between the Gd3+ ions and the 1,2-bdc units. The chains are connected by the [Ni(H2O)2(2,5-pydc)2]2- metalloligand, forming the two-dimensional layer arrangements. The stacking of the layers creates hydrophilic and hydrophobic spaces in the interlamellar region. A one-dimensional water ladder structure, formed by the extraframework water molecules, occupies the hydrophilic region while the benzene ring of 1,2-bdc occupies the hydrophobic region. To the best of our knowledge, the present compound represents the first example of a 3d-4f mixed-metal carboxylate in which two different aromatic dicarboxylate anions act as the linkers. The stabilization energies of the water clusters have been evaluated using density functional theory calculations. The water molecules in 1 are fully reversible accompanied by a change in color (greenish blue to brown) and coordination around Ni2+ ions (octahedral to distorted tetrahedral).
Resumo:
We demonstrate the aptitude of supramolecular hydrogel formation using simple bile acid such as lithocholic acid in aqueous solution in the presence of various dimeric or oligomeric amines. By variation of the choice of the amines in such mixtures the gelation properties could be modulated. However, the replacement of lithocholic acid (LCA) by cholic acid or deoxycholic acid resulted in no hydrogel formation. FT-IR studies confirm that the carboxylate and ammonium residues of the two components are involved in the salt (ion-pair) formation. This promotes further assembly of the components reinforced by a continuous hydrogen bonded network leading to gelation. Electron microscopy shows the morphology of the internal organization of gels of two component systems which also depends significantly on the amine part. Variation of the amine component from the simple 1,2-ethanediamine (EDA) to oligomeric amines in such gels of lithocholic acid changes the morphology of the assembly from long one-dimensional nanotubes to three-dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines interact with the carboxylate and hydroxyl moieties through electrostatic forces and hydrogen bonding. From small angle neutron scattering study, it becomes clear that the weak gel from LCA-EDA shows scattering oscillation due to the presence of non-interacting nanotubules while for gels of LCA with oligomeric amines the individual fibers come together to form complex three-dimensional organizations of higher length scale. The rheological properties of this class of two component system provide clear evidence that the flow behavior can be modulated varying the acid-amine ratio.
Resumo:
Two new three-dimensional metal-organic frameworks (MOFs) [Mn-2(mu(3)-OH)(H2O)(2)(BTC)]-2 H2O, I, and [NaMn(BTC)], II (BTC=1,2,4-benzenetricarboxylate = trimellitate) were synthesized and their structures determined by single-crystal X-ray diffraction (XRD). In I, the Mn-4 cluster, [Mn-4(mu(5)-OH)(2)(H2O)(4)O-12], is connected with eight trimellitate anions and each trimellitate anion connects to four different Mn-4 clusters, resulting in a fluorite-like structure. In II, the Mn2O8 dimer is connected with two Na+ ions through carboxylate oxygen to form mixed-metal distorted Kagome-related two-dimensional -M-O-M- layers, which are pillared by the trimellitate anions forming the three-dimensional structure. The extra-framework water molecules in I are reversibly adsorbed and are also corroborated by powder XRD studies. The formation of octameric water clusters involving free and coordinated water molecules appears to be new. Interesting magnetic behavior has been observed for both compounds. Electron spin resonance (ESR) studies indicate a broadening of the signal below the ordering temperature and appear to support the findings of the magnetic studies.