35 resultados para Central Eurasia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As with 1,2-diphenylethane (dpe), X-ray crystallographic methods measure the central bond in meso-3,4-diphenylhexane-2,5-done (dphd) as significantly shorter than normal for an sp(3)-sp(3) bond. The same methods measure the benzylic (ethane C-Ph) bonds in dphd as unusually long for sp(3)-sp(2) liaisons. Torsional motions of the phenyl rings about the C-Ph bonds have been proposed as the artifacts behind the result of a 'short' central bond in dpe. While a similar explanation can, presumably, hold for the even 'shorter' central bond in dphd, it cannot account for the 'long' C-Ph bonds. The phenyl groups, departing much from regular hexagonal shape, adopt highly skewed conformations with respect to the plane constituted by the four central atoms. It is thought that-the thermal motions of the phenyl rings, conditioned by the potential wells in which they are ensconced in the unit cell, are largely libratory around their normal axes. In what appears to be a straightforward explanation under the 'rigid-body' concept, it appears that these libratory motions of the phenyl rings, that account, at the same time, for the 'short' central bond, are the artifacts behind the 'long' measurement of the C-Ph bonds. These motions could be superimposed on torsional motions analogous to those proposed in the case of dpe. An inspection of the ORTEP diagram from the 298 K data on dphd clearly suggests these possibilities. Supportive evidence for these qualitative explanations from an analysis of the differences between the mean square displacements of C(1) and C(7)/C(1a) and C(7a) based on the 'rigid-body model' is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landslides are hazards encountered during monsoon in undulating terrains of Western Ghats causing geomorphic make over of earth surface resulting in significant damages to life and property. An attempt is made in this paper to identify landslides susceptibility regions in the Sharavathi river basin downstream using frequency ratio method based on the field investigations during July- November 2007. In this regard, base layers of spatial data such as topography, land cover, geology and soil were considered. This is supplemented with the field investigations of landslides. Factors that influence landslide were extracted from the spatial database. The probabilistic model -frequency ratio is computed based on these factors. Landslide susceptibility indices were computed and grouped into five classes. Validation of LHS, showed an accuracy of 89% as 25 of the 28 regions tallied with the field condition of highly vulnerable landslide regions. The landslide susceptible map generated for the downstream would be useful for the district officials to implement appropriate mitigation measures to reduce hazards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of the springtime northern Indian biomass burning are shown for the first time over the central Himalayas by using three years (2007-2009) of surface and space based observations along with a radiative transfer model. Near-surface ozone, black carbon (BC), spectral aerosol optical depths (AODs) and the meteorological parameters are measured at a high altitude site Nainital (29.37 degrees N, 79.45 degrees E, 1958 m amsl) located in the central Himalayas. The satellite observations include the MODIS derived fire counts and AOD (0.55 mu m), and OMI derived tropospheric column NO(2), ultraviolet aerosol index and single scattering albedo. MODIS fire counts and BC observations are used to identify the fire-impacted periods (372 h during 2007-2009) and hence the induced enhancements in surface BC, AOD (0.5 mu m) and ozone are estimated to be 1802 ng m(-3) (similar to 145%), 0.3 (similar to 150%) and 19 ppbv (similar to 34%) respectively. Large enhancements (53-100%) are also seen in the satellite derived parameters over a 2 degrees x 2 degrees region around Nainital. The present analysis highlights the northern Indian biomass burning induced cooling at the surface (-27 W m(-2)) and top of the atmosphere (-8 W m(-2)) in the lesser polluted high altitude regions of the central Himalayas. This cooling leads to an additional atmospheric warming of 19 W m(-2) and increases the lower atmospheric heating rate by 0.8 K day(-1). These biomass burning induced changes over the central Himalayan atmosphere during spring may also lead to enhanced short-wave absorption above clouds and might have an impact on the monsoonal rainfall.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural hazards such as landslides are triggered by numerous factors such as ground movements, rock falls, slope failure, debris flows, slope instability, etc. Changes in slope stability happen due to human intervention, anthropogenic activities, change in soil structure, loss or absence of vegetation (changes in land cover), etc. Loss of vegetation happens when the forest is fragmented due to anthropogenic activities. Hence land cover mapping with forest fragmentation can provide vital information for visualising the regions that require immediate attention from slope stability aspects. The main objective of this paper is to understand the rate of change in forest landscape from 1973 to 2004 through multi-sensor remote sensing data analysis. The forest fragmentation index presented here is based on temporal land use information and forest fragmentation model, in which the forest pixels are classified as patch, transitional, edge, perforated, and interior, that give a measure of forest continuity. The analysis carried out for five prominent watersheds of Uttara Kannada district– Aganashini, Bedthi, Kali, Sharavathi and Venkatpura revealed that interior forest is continuously decreasing while patch, transitional, edge and perforated forest show increasing trend. The effect of forest fragmentation on landslide occurrence was visualised by overlaying the landslide occurrence points on classified image and forest fragmentation map. The increasing patch and transitional forest on hill slopes are the areas prone to landslides, evident from the field verification, indicating that deforestation is a major triggering factor for landslides. This emphasises the need for immediate conservation measures for sustainable management of the landscape. Quantifying and describing land use - land cover change and fragmentation is crucial for assessing the effect of land management policies and environmental protection decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic observations of light detection and ranging (LIDAR) to detect elevated aerosol layer were carried out at Manora Peak (29.4 degrees N, 79.5 degrees E, similar to 1960 m a.s.l), Nainital, in the Central Himalayas during January-May 2008. In spite of being a remote, high-altitude site, an elevated aerosol layer is observed quite frequently in the altitude range of 2460-4460 m a.s.l with a width of similar to 2 km during the observation period. We compare these profiles with the vertical profiles observed over Gadanki (13.5 degrees N, 79.2 degrees E, similar to 370 m a.s.l), a tropical station, where no such elevated aerosol layer was found. Further, there is a steady increase in aerosol optical depth (AOD) from January (winter) to May (summer) from 0.043 to 0.742, respectively, at Manora Peak, indicating aerosol loading in the atmosphere. Our observations show north-westerly winds indicating the convective lifting of aerosols from far-off regions followed by horizontal long-range transport. The presence of strongly absorbing and scattering aerosols in the elevated layer resulted in a relatively large diurnal mean aerosol surface radiative forcing efficiency (forcing per unit optical depth) of about -65 and -63 W m(-2) and the corresponding mean reduction in the observed net solar flux at the surface (cooling effect) is as high as -22 and -30 W m(-2). The reduction of radiation will heat the lower atmosphere by redistributing the radiation with heating rate of 1.13 and 1.31 K day(-1) for April and May 2008, respectively, in the lower atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sapphirine + quartz and orthopyroxene + sillimanite occur in garnet from an Mg-Al granulite from the Central Zone of the Limpopo Complex in South Africa. Textural evidence and a chemical gradient in garnet between the zones preserving the inclusions argue for the formation of sapphirine + quartz after orthopyroxene + sillimanite. Petrological observations, pressure-temperature phase diagrams, and compositional and model proportion results on isopleths indicate the sapphirine + quartz + garnet + orthopyroxene (high-Al) assemblage as the peak metamorphic assemblage (similar to 1050 degrees C at similar to 8.5 kbars), whereas orthopyroxene (low-Al) + sillimanite represents the prograde stage (at ca. 900 degrees C at similar to 8.5 kbars). Our report of these two diagnostic ultrahigh-temperature mineral assemblages in garnet from an Mg-Al granulite is unique, given the rare occurrence of sapphirine + quartz postdating orthopyroxene + sillimanite assemblage in granulites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eclogites and associated high-pressure (HP) rocks in collisional and accretionary orogenic belts preserve a record of subduction and exhumation, and provide a key constraint on the tectonic evolution of the continents. Most eclogites that formed at high pressures but low temperatures at > 10-11 kbar and 450-650 degrees C can be interpreted as a result of subduction of cold oceanic lithosphere. A new class of high-temperature (HT) eclogites that formed above 900 degrees C and at 14 to 30 kbar occurs in the deep continental crust, but their geodynamic significance and processes of formation are poorly understood. Here we show that Neoarchaean mafic-ultramafic complexes in the central granulite facies region of the Lewisian in NW Scotland contain HP/HT garnet-bearing granulites (retrogressed eclogites), gabbros, Iherzolites, and websterites, and that the HP granulites have garnets that contain inclusions of omphacite. From thermodynamic modeling and compositional isopleths we calculate that peak eclogite-facies metamorphism took place at 24-22 kbar and 1060-1040 degrees C. The geochemical signature of one (G-21) of the samples shows a strong depletion of Eu indicating magma fractionation at a crustal level. The Sm-Nd isochron ages of HP phases record different cooling ages of ca. 2480 and 2330 Ma. We suggest that the layered mafic-ultramafic complexes, which may have formed in an oceanic environment, were subducted to eclogite depths, and exhumed as HP garnet-bearing orogenic peridotites. The layered complexes were engulfed by widespread orthogneisses of tonalite-trondhjemite-granodiorite (TTG) composition with granulite facies assemblages. We propose two possible tectonic models: (1) the fact that the relicts of eclogitic complexes are so widespread in the Scourian can be taken as evidence that a >90 km x 40 km-size slab of continental crust containing mafic-ultramafic complexes was subducted to at least 70 km depth in the late Archaean. During exhumation the gneiss protoliths were retrogressed to granulite facies assemblages, but the mafic-ultramafic rocks resisted retrogression. (2) The layered complexes of mafic and ultramafic rocks were subducted to eclogite-facies depths and during exhumation under crustal conditions they were intruded by the orthogneiss protoliths (TTG) that were metamorphosed in the granulite facies. Apart from poorly defined UHP metamorphic rocks in Norway, the retrogressed eclogites in the central granulite/retrogressed eclogite facies Lewisian region, NW Scotland have the highest crustal pressures so far reported for Archaean rocks, and demonstrate that lithospheric subduction was transporting crustal rocks to HP depths in the Neoarchaean. (C) 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotopes from a U/Th dated aragonite stalagmite from the Central Kumaun Himalaya provide evidence of variation in climatic conditions in the last similar to 1800 years. The delta O-18 and delta C-13 values vary from -4.3 parts per thousand to -7.6 parts per thousand and -3.4 parts per thousand to -9.1 parts per thousand respectively, although the stalagmite was not grown in isotopic equilibrium with cave drip water, a clear palaeoclimatic signal in stalagmite delta O-18 values is evident based on the regional climate data. The stalagmite showed a rapid growth rate during 830-910 AD, most likely the lower part of Medieval Warm Period (MWP), and 1600-1640 AD, the middle part of Little Ice Age (LIA). Two distinct phases of reduced precipitation are marked by a 2 parts per thousand shift in 8180 values towards the end of MWP (similar to 1080-1160 AD) and after its termination from similar to 1210 to 1440 AD. The LIA (similar to 1440-1880 AD) is represented by sub-tropical climate similar to modern conditions, whereas the post-LIA was comparatively drier. The Inter Tropical Convergence Zone (ITCZ) was located over the cave location during wetter/warmer conditions. When it shifted southward, precipitation over the study area decreased. A prominent drop in delta O-18 and delta C-13 values during the post-LIA period may also have been additionally influenced by anthropogenic activity in the area. (C) 2013 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We highlight an unrecognized physiological role for the Greek key motif, an evolutionarily conserved super-secondary structural topology of the beta gamma-crystallins. These proteins constitute the bulk of the human eye lens, packed at very high concentrations in a compact, globular, short-range order, generating transparency. Congenital cataract (affecting 400,000 newborns yearly worldwide), associated with 54 mutations in beta gamma-crystallins, occurs in two major phenotypes nuclear cataract, which blocks the central visual axis, hampering the development of the growing eye and demanding earliest intervention, and the milder peripheral progressive cataract where surgery can wait. In order to understand this phenotypic dichotomy at the molecular level, we have studied the structural and aggregation features of representative mutations. Methods: Wild type and several representative mutant proteins were cloned, expressed and purified and their secondary and tertiary structural details, as well as structural stability, were compared in solution, using spectroscopy. Their tendencies to aggregate in vitro and in cellulo were also compared. In addition, we analyzed their structural differences by molecular modeling in silico. Results: Based on their properties, mutants are seen to fall into two classes. Mutants A36P, L45PL54P, R140X, and G165fs display lowered solubility and structural stability, expose several buried residues to the surface, aggregate in vitro and in cellulo, and disturb/distort the Greek key motif. And they are associated with nuclear cataract. In contrast, mutants P24T and R77S, associated with peripheral cataract, behave quite similar to the wild type molecule, and do not affect the Greek key topology. Conclusion: When a mutation distorts even one of the four Greek key motifs, the protein readily self-aggregates and precipitates, consistent with the phenotype of nuclear cataract, while mutations not affecting the motif display `native state aggregation', leading to peripheral cataract, thus offering a protein structural rationale for the cataract phenotypic dichotomy ``distort motif, lose central vision''.