62 resultados para Calabi-Yau manifold
Resumo:
We explore an isoparametric interpolation of total quaternion for geometrically consistent, strain-objective and path-independent finite element solutions of the geometrically exact beam. This interpolation is a variant of the broader class known as slerp. The equivalence between the proposed interpolation and that of relative rotation is shown without any recourse to local bijection between quaternions and rotations. We show that, for a two-noded beam element, the use of relative rotation is not mandatory for attaining consistency cum objectivity and an appropriate interpolation of total rotation variables is sufficient. The interpolation of total quaternion, which is computationally more efficient than the one based on local rotations, converts nodal rotation vectors to quaternions and interpolates them in a manner consistent with the character of the rotation manifold. This interpolation, unlike the additive interpolation of total rotation, corresponds to a geodesic on the rotation manifold. For beam elements with more than two nodes, however, a consistent extension of the proposed quaternion interpolation is difficult. Alternatively, a quaternion-based procedure involving interpolation of relative rotations is proposed for such higher order elements. We also briefly discuss a strategy for the removal of possible singularity in the interpolation of quaternions, proposed in [I. Romero, The interpolation of rotations and its application to finite element models of geometrically exact rods, Comput. Mech. 34 (2004) 121–133]. The strain-objectivity and path-independence of solutions are justified theoretically and then demonstrated through numerical experiments. This study, being focused only on the interpolation of rotations, uses a standard finite element discretization, as adopted by Simo and Vu-Quoc [J.C. Simo, L. Vu-Quoc, A three-dimensional finite rod model part II: computational aspects, Comput. Methods Appl. Mech. Engrg. 58 (1986) 79–116]. The rotation update is achieved via quaternion multiplication followed by the extraction of the rotation vector. Nodal rotations are stored in terms of rotation vectors and no secondary storages are required.
Resumo:
We prove that if (M-n, g), n >= 4, is a compact, orientable, locally irreducible Riemannian manifold with nonnegative isotropic curvature,then one of the following possibilities hold: (i) M admits a metric with positive isotropic curvature. (ii) (M, g) is isometric to a locally symmetric space. (iii) (M, g) is Kahler and biholomorphic to CPn/2. (iv) (M, g) is quaternionic-Kahler. This is implied by the following result: Let (M-2n, g) be a compact, locally irreducible Kahler manifold with nonnegative isotropic curvature. Then either M is biholomorphic to CPn or isometric to a compact Hermitian symmetric space. This answers a question of Micallef and Wang in the affirmative. The proof is based on the recent work of Brendle and Schoen on the Ricci flow.
Resumo:
Via a computer search, Altshuler and Steinberg found that there are 1296+1 combinatorial 3-manifolds on nine vertices, of which only one is non-sphere. This exceptional 3-manifold View the MathML source triangulates the twisted S2-bundle over S1. It was first constructed by Walkup. In this paper, we present a computer-free proof of the uniqueness of this non-sphere combinatorial 3-manifold. As opposed to the computer-generated proof, ours does not require wading through all the 9-vertex 3-spheres. As a preliminary result, we also show that any 9-vertex combinatorial 3-manifold is equivalent by proper bistellar moves to a 9-vertex neighbourly 3-manifold.
Resumo:
This paper is concerned with a study of some of the properties of locally product and almost locally product structures on a differentiable manifold X n of class C k . Every locally product space has certain almost locally product structures which transform the local tangent space to X n at an arbitrary point P in a set fashion: this is studied in Theorem (2.2). Theorem (2.3) considers the nature of transformations that exist between two co-ordinate systems at a point whenever an almost locally product structure has the same local representation in each of these co-ordinate systems. A necessary and sufficient condition for X n to be a locally product manifold is obtained in terms of the pseudo-group of co-ordinate transformations on X n and the subpseudo-groups [cf., Theoren (2.1)]. Section 3 is entirely devoted to the study of integrable almost locally product structures.
Resumo:
We study an abelian Chern-Simons theory on a five-dimensional manifold with boundary. We find it to be equivalent to a higher-derivative generalization of the abelian Wess-Zumino-Witten model on the boundary. It contains a U(1) current algebra with an operational extension.
Resumo:
We construct an invariant of certain open four-manifolds using the Heegaard Floer theory of Ozsvath and Szabo. We show that there is a manifold X homeomorphic to R-4 for which the invariant is non-trivial,showing that X is an exotic R-4. This is the first invariant that detects exotic R-4' s. (C) 2009 Published by Elsevier GmbH.
Resumo:
A new fiber bundle approach to the gauge theory of a group G that involves space‐time symmetries as well as internal symmetries is presented. The ungauged group G is regarded as the group of left translations on a fiber bundle G(G/H,H), where H is a closed subgroup and G/H is space‐time. The Yang–Mills potential is the pullback of the Maurer–Cartan form and the Yang–Mills fields are zero. More general diffeomorphisms on the bundle space are then identified as the appropriate gauged generalizations of the left translations, and the Yang–Mills potential is identified as the pullback of the dual of a certain kind of vielbein on the group manifold. The Yang–Mills fields include a torsion on space‐time.
Resumo:
Splittings of a free group correspond to embedded spheres in the 3-manifold M = # (k) S (2) x S (1). These can be represented in a normal form due to Hatcher. In this paper, we determine the normal form in terms of crossings of partitions of ends corresponding to normal spheres, using a graph of trees representation for normal forms. In particular, we give a constructive proof of a criterion determining when a conjugacy class in pi (2)(M) can be represented by an embedded sphere.
Resumo:
The Reeb graph of a scalar function represents the evolution of the topology of its level sets. In this video, we describe a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Arcs in the Reeb graph are computed in the second step using a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The algorithm is also able to handle non-manifold domains.
Resumo:
A numerical integration procedure for rotational motion using a rotation vector parametrization is explored from an engineering perspective by using rudimentary vector analysis. The incremental rotation vector, angular velocity and acceleration correspond to different tangent spaces of the rotation manifold at different times and have a non-vectorial character. We rewrite the equation of motion in terms of vectors lying in the same tangent space, facilitating vector space operations consistent with the underlying geometric structure. While any integration algorithm (that works within a vector space setting) may be used, we presently employ a family of explicit Runge-Kutta algorithms to solve this equation. While this work is primarily motivated out of a need for highly accurate numerical solutions of dissipative rotational systems of engineering interest, we also compare the numerical performance of the present scheme with some of the invariant preserving schemes, namely ALGO-C1, STW, LIEMIDEA] and SUBCYC-M. Numerical results show better local accuracy via the present approach vis-a-vis the preserving algorithms. It is also noted that the preserving algorithms do not simultaneously preserve all constants of motion. We incorporate adaptive time-stepping within the present scheme and this in turn enables still higher accuracy and a `near preservation' of constants of motion over significantly longer intervals. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
In computational mechanics, finite rotations are often represented by rotation vectors. Rotation vector increments corresponding to different tangent: spaces are generally related by a linear operator, known as the tangential transformation T. In this note, we derive the higher order terms that are usually left out in linear relation. The exact nonlinear relation is also presented. Errors via the linearized T are numerically estimated. While the concept of T arises out of the nonlinear characteristics of the rotation manifold, it has been derived via tensor analysis in the context of computational mechanics (Cardona and Geradin, 1988). We investigate the operator T from a Lie group perspective, which provides a better insight and a 1-1 correspondence between approaches based on tensor analysis and the standard matrix Lie group theory. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We apply the method of multiple scales (MMS) to a well-known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the timescale of typical cutting tool oscillations. The MMS up to second order, recently developed for such systems, is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than the first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy in that plotted solutions of moderate amplitudes are visually near-indistinguishable. The advantages of the present analysis are that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space; lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS; the strong sensitivity of the slow modulation dynamics to small changes in parameter values, peculiar to such systems with large delays, is seen clearly; and though certain parameters are treated as small (or, reciprocally, large), the analysis is not restricted to infinitesimal distances from the Hopf bifurcation.
Resumo:
The low-lying singlets and triplets of biphenyl are obtained exactly within the PPP model using the diagrammatic valence bond method. The energy gaps within the singlet manifold as well as the lowest singlet-triplet gap are found to be in good agreement with experimental results. The two weak absorptions between 4·1 and 4·2 eV reported experimentally are attributed to the two states lying below the optical gap that become weakly allowed on breaking electron-hole and inversion symmetries. The observed blue shift of the spectral lines, attributed to a change in dihedral angle, on going from crystalline to solution to vapour phase is also well reproduced within the PPP model. The bond orders show that the ground singlet state is benzenoidal while the dipole excited state as well as the lowest triplet state are quinonoidal and planar. Comparison with the experimental spin densities and the fine structure constants D and E in the triplet state point to slightly weaker correlations than assumed by the PPP model. The introduction of a 1-8 bond to mimic poly(paraphenylene)s gives an optical gap that is in good agreement with experiment.
Resumo:
We study the electronic structure of La1-xSrxMnO3+δ, x=0, 0.1, 0.2, 0.3, and 0.4, across the semiconductor-metal transition, using various electron spectroscopy techniques. The negligible intensity seen at EF using ultraviolet photoemission spectroscopy and bremsstrahlung isochromat spectroscopy (BIS) indicate an unusual semiconductor-metal transition observed for x≥0.2, consistent with the resistivity data. The BIS spectra show doped hole states developing about 1.4 eV above EF as a function of x. Auger electron spectroscopy gives an estimate of the intra-atomic Coulomb energy in the O 2p manifold to be about 6.8 eV. The Mn 2p core-level spectrum of LaMnO3, analyzed in terms of a configuration-interaction calculation, gives parameter values of the charge-transfer energy Δ=5.0 eV, the hybridization strength between Mn 3d and O 2p states, t=3.8 eV, and the on-site Coulomb energy in Mn 3d states Udd=4.0 eV, suggesting a mixed character for the ground state of LaMnO3.
Resumo:
For d >= 2, Walkup's class K (d) consists of the d-dimensional simplicial complexes all whose vertex-links are stacked (d - 1)-spheres. Kalai showed that for d >= 4, all connected members of K (d) are obtained from stacked d-spheres by finitely many elementary handle additions. According to a result of Walkup, the face vector of any triangulated 4-manifold X with Euler characteristic chi satisfies f(1) >= 5f(0) - 15/2 chi, with equality only for X is an element of K(4). Kuhnel observed that this implies f(0)(f(0) - 11) >= -15 chi, with equality only for 2-neighborly members of K(4). Kuhnel also asked if there is a triangulated 4-manifold with f(0) = 15, chi = -4 (attaining equality in his lower bound). In this paper, guided by Kalai's theorem, we show that indeed there is such a triangulation. It triangulates the connected sum of three copies of the twisted sphere product S-3 (sic) S-1. Because of Kuhnel's inequality, the given triangulation of this manifold is a vertex-minimal triangulation. By a recent result of Effenberger, the triangulation constructed here is tight. Apart from the neighborly 2-manifolds and the infinite family of (2d + 3)-vertex sphere products Sd-1 X S-1 (twisted for d odd), only fourteen tight triangulated manifolds were known so far. The present construction yields a new member of this sporadic family. We also present a self-contained proof of Kalai's result. (C) 2011 Elsevier B.V. All rights reserved.