24 resultados para CRITICALITY
Resumo:
In recent years, there has been significant effort in the synthesis of nanocrystalline spinel ferrites due to their unique properties. Among them, zinc ferrite has been widely investigated for countless applications. As traditional ferrite synthesis methods are energy- and time-intensive, there is need for a resource-effective process that can prepare ferrites quickly and efficiently without compromising material quality. We report on a novel microwave-assisted soft-chemical synthesis technique in the liquid medium for synthesis of ZnFe2O4 powder below 100 °C, within 5 min. The use of β-diketonate precursors, featuring direct metal-to-oxygen bonds in their molecular structure, not only reduces process temperature and duration sharply, but also leads to water-soluble and non-toxic by-products. As synthesized powder is annealed at 300 °C for 2 hrs in a conventional anneal (CA) schedule. An alternative procedure, a 2-min rapid anneal at 300 °C (RA) is shown to be sufficient to crystallize the ferrite particles, which show a saturation magnetization (MS) of 38 emu/g, compared with 39 emu/g for a 2-hr CA. This signifies that our process is efficient enough to reduce energy consumption by ∼85% just by altering the anneal scheme. Recognizing the criticality of anneal process to the energy budget, a more energy-efficient variation of the reaction process was developed, which obviates the need for post-synthesis annealing altogether. It is shown that the process also can be employed to deposit crystalline thin films of ferrites.
A dynamic bandwidth allocation scheme for interactive multimedia applications over cellular networks
Resumo:
Cellular networks played key role in enabling high level of bandwidth for users by employing traditional methods such as guaranteed QoS based on application category at radio access stratum level for various classes of QoSs. Also, the newer multimode phones (e.g., phones that support LTE (Long Term Evolution standard), UMTS, GSM, WIFI all at once) are capable to use multiple access methods simulta- neously and can perform seamless handover among various supported technologies to remain connected. With various types of applications (including interactive ones) running on these devices, which in turn have different QoS requirements, this work discusses as how QoS (measured in terms of user level response time, delay, jitter and transmission rate) can be achieved for interactive applications using dynamic bandwidth allocation schemes over cellular networks. In this work, we propose a dynamic bandwidth allocation scheme for interactive multimedia applications with/without background load in the cellular networks. The system has been simulated for many application types running in parallel and it has been observed that if interactive applications are to be provided with decent response time, a periodic overhauling of policy at admission control has to be done by taking into account history, criticality of applications. The results demonstrate that interactive appli- cations can be provided with good service if policy database at admission control is reviewed dynamically.
Resumo:
Some bulk metallic glasses (BMGs) exhibit high crack initiation toughness due to shear band mediated plastic flow at the crack tip and yet do not display additional resistance to crack growth due to the lack of a microstructure. Thus, at crack initiation, the fracture behavior of BMGs transits from that of ductile alloys to that of brittle ceramics. In this paper, we attempt to understand the physics behind the characteristic length from the notch root at which this transition occurs, through testing of four-point bend specimens made of a nominally ductile Zr-based BMG in three different structural states. In the as-cast state, both symmetric (mode I) and asymmetric (mixed mode) bend specimens are tested. The process of shear band mediated plastic flow followed by crack initiation at the notch root was monitored through in situ imaging. Results show that stable crack growth occurs inside a dominant shear band through a distance of, similar to 60 mu m, irrespective of the structural state and mode mixity, before attaining criticality. Detailed finite element simulations show that this length corresponds to the distance from the notch root over which a positive hydrostatic stress gradient prevails. The mean ridge heights on fractured surfaces are found to correlate with the toughness of the BMG. The Argon and Salama model, which is based on the meniscus instability phenomenon at the notch root, is modified to explain the experimentally observed physics of fracture in ductile BMGs. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The ferroelectric system (1-x)PbZrO3-(x)Bi(Mg1/2Ti1/2)O-3 has been investigated as a function of composition, temperature, and electric field by x-ray powder diffraction, dielectric, and ferroelectric measurements. Within the solubility limit (x similar to 0.25), the system evolves from an orthorhombic-antiferroelectric to rhombohedral-ferroelectric state through a phase coexistence region. The highest polarization was found not for the composition exhibiting a pure ferroelectric state, but for a composition x = 0.15 exhibiting ferroelectric + antiferroelectric phase coexistence close to the rhombohedral phase boundary. Electric poling of the equilibrium two-phase state led to irreversible enhancement in the rhombohedral phase fraction suggesting that the enhanced polarization is related to the enhanced polarizability of the lattice due to first order criticality as in ferroelectric-ferroelectric morphotropic phase boundary systems. (C) 2013 AIP Publishing LLC.
Resumo:
Size effect in ferroelectrics has been extensively investigated in the past with the general consensus that the long-range ferroelectric ordering gradually disappears with decreasing crystallite size, eventually leading to the paraelectric state. In this paper, we show that the compositions exhibiting giant tetragonality (c/a similar to 1.18) of the ferroelectric alloy system BiFeO3-PbTiO3 transform from a pure tetragonal phase to a state comprising tetragonal and rhombohedral phases as the average crystallite size is reduced from similar to 10 to similar to 1 mu m. It is argued that the increased surface energy in the smaller sized crystallites creates an equivalent compressive stress that drives the system towards tetragonal-rhombohedral criticality.
Resumo:
The nature of the stress and electric field driven structural and microstructural transformations in the morphotropic phase boundary (MPB) compositions of the high Curie point piezoelectric system BiScO3-PbTiO3 has been examined by ex situ based techniques. Using a powder poling technique, which is based on the concept of exploiting the irreversible structural change that occurs after the application of a strong electric field and stress independently, it was possible to ascertain that both moderate stress and electric field induce identical structural transformation-a fraction of the monoclinic phase transforms irreversibly to the tetragonal phase. Moreover, analysis of the dielectric response before and after poling revealed a counterintuitive phenomenon of poling induced decrease in the spatial coherence of polarization for compositions around the MPB and not so for compositions far away from the MPB range. Exploiting the greater sensitivity of this technique, we demonstrate that the criticality associated with the interferroelectric transition spans a wider composition range than what is conventionally reported in the literature based on bulk x-ray/neutron powder diffraction techniques.
Resumo:
BaTiO3 is shown to exhibit anomalous piezoelectric response, comparable to that of lead-zirconate titanate, by dilute Sn modification (1-4 mol%). Using a newly discovered powder poling technique it is shown that the mechanism associated with this anomalous strain response involves electric-field-induced switching of polarization vector from 001] towards 101] pseudocubic direction. This switchability is significantly enhanced by tuning the tetragonal-orthorhombic first-order criticality near to room temperature.
Resumo:
We investigate the correlation between the band propagation property and the nature and amplitude of serrations in the Portevin-Le Chatelier effect within the framework of the Ananthakrishna model. Several significant results emerge. First, we find that spatial and temporal correlations continuously increase with strain rate from type C to type A bands. Consequently, the nature of the bands also changes continuously from type C to A bands, and so do the changes in the associated serrations. Second, even the smallest extent of propagation induces small amplitude serrations. The spatial extent of band propagation is directly correlated with the duration of small amplitude serrations, a result that is consistent with recent experiments. This correspondence allows one to estimate the spatial extent of band propagation by just measuring the temporal stretch of small amplitude serrations. Therefore, this should be of practical value when only stress versus strain is recorded. Third, the average stress drop magnitude of the small amplitude serrations induced by the propagating bands remains small and nearly constant with strain rate. As a consequence, the fully propagating type A bands are in a state of criticality. We rationalize the increasing levels of spatial and temporal correlations found with increasing strain rates. Lastly, the model also predicts several band morphologies seen in experiments including the Luders-like propagating band. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The highly complex structure-property interrelationship in the lead-free piezoelectric (x) Na1/2Bi1/2TiO3 - (1 - x) BaTiO3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x = 0.80, i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x < 0.8) to a long-period modulated tetragonal phase (for x > 0.80). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes Bellaiche and Iniguez, Phys. Rev. B 88, 014104 ( 2013); Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013)].