184 resultados para CORE-SHELL PHOSPHOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides information about an electrodeposition based two-step synthesis methodology for producing core-shell Ag-(Ni-O) nanowires and their detailed structural and compositional characterization using electron microscopy technique. Nanowires were produced by employing anodic alumina templates with a pore diameter of 200 nm. In the first step of the synthesis process, nanocrystalline Ni-O was electrodeposited in a controlled manner such that it heterogeneously nucleated and grew only on the template pore walls without filling the pores from bottom upwards. This alumina template with pore walls coated with Ni-O was then utilized as a template during the electrodeposition of Ag in the second step. Electrodeposited Ag filled the template pores to finally produce Ag-(Ni-O) core-shell nanowires with an overall diameter of 200 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present article reports a facile method for preparing the vertically-aligned 1D arrays of a new type of type II n-n TiO2/ZnO core/shell nano-heterostructures by growing the nano-shell of ZnO on the electrochemically fabricated TiO2 nanotubes core for visible light driven photoelectrochemical applications. The strong interfacial interaction at the type II heterojunction leads to an effective interfacial charge separation and charge transport. The presence of various defects such as surface states, interface states and other defects in the nano-heterostructure enable it for improved visible light photoelectrochemical performance. The presence of such defects has also been confirmed by the UV-vis absorption, cathodoluminescence, and crystallographic studies. The TiO2/ZnO core/shell nano-heterostructures exhibit strong green luminescence due to the defect transitions. The TiO2/ZnO core/shell nano-heterostructures photo-electrode show significant enhancement of visible light absorption and it provides a photocurrent density of 0.7 mA cm(-2) at 1 V vs. Ag/AgCl, which is almost 2.7 times that of the TiO2/ZnO core/shell nano-heterostructures under dark conditions. The electrochemical impedance spectroscopy results demonstrate that the substantially improved photoelectrochemical and photo-switching performance of the nano-heterostructures photo-anode is because of the enhancement of interfacial charge transfer and the increase in the charge carrier density caused by the incorporation of the ZnO nano-shell on TiO2 nanotube core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of indium tin oxide (ITO) layers over vertically aligned zinc oxide nanorods (ZnO NRs) has been investigated to consider ITO nanolayers as transparent conducting oxide electrodes (TCOE) for hierarchical heteronanostructure solar cell devices that have ZnO nanostructures as branches. ZnO/ITO core/shell nanostructures were prepared in two- steps using vapor-liquid-solid and evaporation processes, and further the structures were annealed at various temperatures. Transmission electron microscopic studies show that the as-grown ZnO/ITO structures consist of an amorphous ITO shell on single crystalline ZnO cores, whereas the structures annealed above 300 degrees C consist of a single crystalline ITO shell. ITO layer deposited ZnO NRs exhibit a small red-shift in ZnO near-band-edge emission as well as optical band gap. The electrical measurements carried out on single ZnO/ITO core/shell NR under dark and UV light showed excellent thermionic transport properties. From these investigations it is emphasized that ITO nanolayers could be used as TCO electrodes for prototype ZnO based hierarchical solar cell devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using all-atom molecular dynamics (MD) simulations, we have studied the mechanical properties of ZnS/CdS core/shell nanowires. Our results show that the coating of a few-atomic-layer CdS shell on the ZnS nanowire leads to a significant change in the stiffness of the core/shell nanowires compared to the stiffness of pure ZnS nanowires. The binding energy between the core and shell region decreases due to the lattice mismatch at the core-shell interface. This reduction in binding energy plays an important role in determining the stiffness of a core/shell nanowire. We have also investigated the effects of the shell on the thermal conductivity and melting behavior of the nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the expanding field of nanoengineering and the production of nanocrystals (NCs) with higher quality and tunable size, having reliable theoretical calculations to complement the experimental results is very important. Here we present such a study of CdSe/CdS core-shell NCs using density functional theory, where we focus on dependence of the properties of these NCs on core types and interfaces between the core and the shell, as well as on the core/shell ratio. We show that the density of states and the absorption indices depend rather weakly on the type of interface and core type. We demonstrate that the HOMO wavefunction is mainly localised in the core of the nanocrystal, depending primarily on the core/shell ratio. On the other hand the LUMO wavefunction spreads more into the shell of the nanocrystal, where its confinement in the core is almost the same in each of the studied structural models. Furthermore, we show that the radiative lifetimes decrease with increasing core sizes due to changes in the dipolar overlap integral of the HOMO and LUMO wavefunctions. In addition, the electron-hole Coulomb interaction energies follow a similar pattern as the localisation of the wavefunctions, with the smaller NCs having higher Coulomb interaction energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High sensitivity gas sensors are typically realized using metal catalysts and nanostructured materials, utilizing non-conventional synthesis and processing techniques, incompatible with on-chip integration of sensor arrays. In this work, we report a new device architecture, suspended core-shell Pt-PtOx nanostructure that is fully CMOS-compatible. The device consists of a metal gate core, embedded within a partially suspended semiconductor shell with source and drain contacts in the anchored region. The reduced work function in suspended region, coupled with builtin electric field of metal-semiconductor junction, enables the modulation of drain current, due to room temperature Redox reactions on exposure to gas. The device architecture is validated using Pt-PtO2 suspended nanostructure for sensing H-2 down to 200 ppb under room temperature. By exploiting catalytic activity of PtO2, in conjunction with its p-type semiconducting behavior, we demonstrate about two orders of magnitude improvement in sensitivity and limit of detection, compared to the sensors reported in recent literature. Pt thin film, deposited on SiO2, is lithographically patterned and converted into suspended Pt-PtO2 sensor, in a single step isotropic SiO2 etching. An optimum design space for the sensor is elucidated with the initial Pt film thickness ranging between 10 nm and 30 nm, for low power (< 5 mu W), room temperature operation. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, magnetic core-shell nanoparticles have received widespread attention due to their unique properties that can be used for various applications. We introduce here a magnetic core-shell nanoparticle system for potential application as a contrast agent in magnetic resonance imaging (MRI). MnFe2O4-Fe3O4 core-shell nanoparticles were synthesized by the wet-chemical synthesis method. Detailed structural and compositional charaterization confirmed the formation of a core-shell microstructure for the nanoparticles. Magnetic charaterization revealed the superparamagnetic nature of the as-synthesized core-shell nanoparticles. Average size and saturation magnetization values obtained for the as-synthesized core-shell nanoparticle were 12.5 nm and 69.34 emu g(-1) respectively. The transverse relaxivity value of the water protons obtained in the presence of the core-shell nanoparticles was 184.1 mM(-1) s(-1). To investigate the effect of the core-shell geometry towards enhancing the relaxivity value, transverse relaxivity values were also obtained in the presence of separately synthesized single phase Fe3O4 and MnFe2O4 nanoparticles. Average size and saturation magnetization values for the as-synthesized Fe3O4 nanoparticles were 12 nm and 65.8 emu g(-1) respectively. Average size and saturation magnetization values for the MnFe2O4 nanoparticles were 9 nm and 61.5 emu g(-1) respectively. The transverse relaxivity value obtained in the presence of single phase Fe3O4 and MnFe2O4 nanoparticles was 96.6 and 83.2 mM(-1) s(-1) respectively. All the nanoparticles (core-shell and single phase) were coated with chitosan by a surfactant exchange reaction before determining the relaxivity values. For similar nanoparticle sizes and saturation magnetization values, the highest value of the transverse relaxivity in the case of core-shell nanoparticles clearly illustrated that the difference in the magnetic nature of the core and shell phases in the core-shell nanoparticles creates greater magnetic inhomogeneity in the surrounding medium yielding a high value for proton relaxivity. The MnFe2O4-Fe3O4 core-shell nanoparticles exhibited extremely low toxicity towards the MCF-7 cell line. Taken together, this opens up new avenues for the use of core-shell nanoparticles in MRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO (core)/graphitic (shell) nanowires were successfully fabricated by a one-step method. Morphology of the as-grown nanowires was studied in detail by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDS). High resolution TEM micrographs and selected area electron diffraction patterns reveal the core/shell morphology of the nanowires that grew along the c-axis of ZnO. EDS study of the nanowires confirms that there are no impurities within the detectable limit. Superconducting quantum interference device magnetometer measurements show room temperature ferromagnetic ordering in these core/shell nanowires. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 degrees C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core-shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/mu m and a high current density of 1.0 mA/cm(2) at 4.5 V/mu m for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different strategies for functionalization of the core region and periphery of core-shell type hyperbranched polymers (HBP) using the ``click'' reaction have been explored. For achieving periphera functionalization, an AB(2) + A-R-1 + A-R-2 type copolymerization approach was used, where A-R-1 is heptaethylene glycol monomethyl ether (HPEG-M) and A-R-2 is tetraethylene glycol monopropargyl ether (TEG-P). A very small mole fraction of the propargyl containing monomer, TEG-P, was used to ensure that the water-solubility of the hyperbranched polymer is minimally affected. Similarly, to incorporate propargyl groups in the core region, a new propargyl group bearing B-2-typ monomer was designed and utilized in an AB(2) + A(2) + B-2 + A-R-1 type copolymerization, such that the total mole fraction of B-2 + A(2) is small and their mole-ratio is 1: 1. Further, using a combination of both the above approaches, namely AB(2) + A(2) + B-2 + A-R-1 + A-R-2, hyperbranched structures that incorporate propargyl groups both at theperiphery and within the core were synthesized. Since the AB(2) monomer carries a hexamethylene spacer (C-6) and the periphery is PEGylated all the derivatized polymers form core-shell type structures in aqueous solutions. Attempts were made to ascertain and probe the location of the propargyl groups in these HBP's, by ``clicking'' azidomethylpyrene, onto them. However, the fluorescence spectra of aqueous solutions of the pyrene derivatized polymers were unable to discriminate between the various locations, possibly because the relatively hydrophobic pyrene units insert themselves into the core region to minimize exposure to water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resonance energy transfer (RET) from the visible emission of core−shell ZnO:MgO nanocrystals to Nile Red chromophores, following band gap excitation in the UV, has been investigated for four different nanocrystal sizes. With use of steady state and time-resolved fluorescence spectroscopic measurements the wavelength dependent RET efficiencies have been determined. The RET process in ZnO:MgO nanocrystals occurs from emissions involving trap state recombination. There are two such processes with different RET efficiencies for the same particle size. This is shown to be a consequence of the fact that the recombination processes giving rise to the two emissions are located at different distances from the center of the particle so that the donor−acceptor distances for the two are different, even for the same particle size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc micro and nanostructures were synthesized in vacuum by condensing evaporated zinc on Si substrate at different gas pressures. The morphology of the grown Zn structures was found to be dependent on the oxygen partial pressure. Depending on oxygen partial pressure it varied from two-dimensional microdisks to one-dimensional nanowire. The morphology and structural properties of the grown micro and nanostructures were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Transmission electron microscopy (TEM) studies on the grown Zn nanowires have shown that they exhibit core/shell-like structures, where a thin ZnO layer forms the shell. A possible growth mechanism behind the formation of different micro and nanostructures has been proposed. In addition, we have synthesized ZnO nanocanal-like structures by annealing Zn nanowires in vacuum at 350 °C for 30 min.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present investigation explores the adaptability of a microwave assisted route to obtain silver nanoparticles by the reduction of AgNO3 with vanillin, an environmentally benign material. Anionic surfactants such as AOT and SDS were used separately for encapsulating AgNPs and their role was compared. The UV-Visible absorption spectra present a broad SPR band consisting of two peaks suggesting the formation of silver nanoparticle with bimodal size distribution. The TEM image shows particles with spherical and hexagonal morphologies which confirms the results of UV-Vis studies. The anisotropy in the particle morphology can be attributed to the surface oxidation which in turn produces Ag@Ag2O core-shell nanostructures. Thus an intriguing feature of this system is that the obtained colloid is a mixture of AgNPs with and without Ag2O layers. Studies on the influence of pH on the stability of the synthesized nanoparticles revealed that the presence of excess Ag2O layers has a profound influence on it. Ag2O layers can be removed from AgNPs' surface by changing the solution pH to the acidic regime. The present study attests the enhanced ability of AOT in stabilizing the AgNPs in aqueous media. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We prove that CdS nanocrystals can be thermodynamically stabilized in both wurtzite and zinc-blende crystallographic phases at will, just by the proper choice of the capping ligand. As a striking demonstration of this, the largest CdS nanocrystals (similar to 15 nm diameter) ever formed with the zinc-blende structure have been synthesized at a high reaction temperature of 310 degrees C, in contrast to previous reports suggesting the formation of zinc-blende CdS only in the small size limit (< 4.5 nm) or at a lower reaction temperature (<= 240 degrees C). Theoretical analysis establishes that the binding energy of trioctylphosphine molecules on the (001) surface of zinc-blende CdS is significantly larger than that for any of the wurtzite planes. Consequently, trioctylphosphine as a capping agent stabilizes the zinc-blende phase via influencing the surface energy that plays an important role in the overall energetics of a nanocrystal. Besides achieving giant zinc-blende CdS nanocrystals, this new understanding allows us to prepare CdSe and CdSe/CdS core/shell nanocrystals in the zinc-blende structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoparticles probably constitute the largest class of nanomaterials. Nanoparticles of several inorganic materials have been prepared by employing a variety of synthetic strategies. Besides synthesizing nanoparticles, there has been considerable effort to selectively prepare nanoparticles of different shapes. In view of the great interest in inorganic nanoparticles evinced in the last few years, we have prepared this perspective on the present status of the synthesis of inorganic nanoparticles. This article includes a brief discussion of methods followed by reports on the synthesis of nanoparticles of various classes of inorganic materials such as metals, alloys, oxides chalcogenides and pnictides. A brief section on core-shell nanoparticles is also included.