95 resultados para CONVEX


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage dependent membrane channels are formed by the zervamicins, a group of α-aminoisobutyric acid containing peptides. The role of polar residues like Thr, Gln and Hyp in promoting helical bundle formation is established by dramatically reduced channel lifetimes for a synthetic apolar analog. Crystal structures of Leu1-zervamicin reveal association of bent helices. Polar contacts between convex faces result in an ‘hour glass’ like arrangement of an aqueous channel with a central constriction. The structure suggests that gating mechanisms may involve movement of the Gln11 carboxamide group. Gln3 may play a role in modulating the size of the channel mouth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The membrane channel-forming polypeptide, Leu(1)-zervamicin, Ac-Leu-Ile-Gln-Iva-Ile(5)-Thr-Aib-Leu-Aib-Hyp(10) -Gln-Aib-Hyp-Aib-Pro(15)-Phol (Aib: alpha-aminoisobutyric acid; Iva: isovaline; Hyp: 4-hydroxyproline; Phol: phenylalininol) has been analyzed by x-ray diffraction in a third crystal form. Although the bent helix is quite similar to the conformations found in crystals A and B, the amount of bending is more severe with a bending angle approximate to 47 degrees, The water channel formed by the convex polar faces of neighboring helices is larger at the mouth than in crystals A and B, and the water sites have become disordered. The channel is interrupted in the middle by a hydrogen bond between the OH of Hyp(10) and the NH2 of the Gln(11) of a neighboring molecule. The side chain of Gln(11) is wrapped around the helix backbone in an unusual fashion in order that it can augment the polar side of the helix. In the present crystal C there appears to be an additional conformation for the Gln(11) side chain (with approximate to 20% occupancy) that opens the channel for possible ion passage. Structure parameters for C85H140N18O22.xH(2)O.C2H5OH are space group P2(1)2(1)2(1), a = 10.337 (2) Angstrom, b = 28.387 (7) Angstrom, c = 39.864 (11) Angstrom, Z = 4, agreement factor R = 12.99% for 3250 data observed > 3 sigma(F), resolution = 1.2 Angstrom. (C) 1994 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that the group of continuous isometries for the Kobayashi or Caratheodory metrics of a strongly convex domain in C-n is compact unless the domain is biholomorphic to the ball. A key ingredient, proved using differential geometric ideas, is that a continuous isometry between a strongly convex domain and the ball has to be biholomorphic or anti-biholomorphic. Combining this with a metric version of Pinchuk's rescaling technique gives the main result.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plastic response of a segment of a simply supported orthotropic spherical shell under a uniform blast loading applied on the convex surface of the shell is presented. The blast is assumed to impart a uniform velocity to the shell surface initially. The material of the shell is orthotropic obeying a modified Tresca yield hypersurface conditions and the associated flow rules. The deformation of the shell is determined during all phases of its motion by considering the motion of plastic hinges in different regimes of flow. Numerical results presented include the permanent deformed configuration of the shell and the total time of shell response for different degrees of orthotropy. Conclusions regarding the plastic behaviour of spherical shells with circumferential and meridional stiffening under uniform blast load are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For active contour modeling (ACM), we propose a novel self-organizing map (SOM)-based approach, called the batch-SOM (BSOM), that attempts to integrate the advantages of SOM- and snake-based ACMs in order to extract the desired contours from images. We employ feature points, in the form of ail edge-map (as obtained from a standard edge-detection operation), to guide the contour (as in the case of SOM-based ACMs) along with the gradient and intensity variations in a local region to ensure that the contour does not "leak" into the object boundary in case of faulty feature points (weak or broken edges). In contrast with the snake-based ACMs, however, we do not use an explicit energy functional (based on gradient or intensity) for controlling the contour movement. We extend the BSOM to handle extraction of contours of multiple objects, by splitting a single contour into as many subcontours as the objects in the image. The BSOM and its extended version are tested on synthetic binary and gray-level images with both single and multiple objects. We also demonstrate the efficacy of the BSOM on images of objects having both convex and nonconvex boundaries. The results demonstrate the superiority of the BSOM over others. Finally, we analyze the limitations of the BSOM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider functions that map the open unit disc conformally onto the complement of a bounded convex set. We call these functions concave univalent functions. In 1994, Livingston presented a characterization for these functions. In this paper, we observe that there is a minor flaw with this characterization. We obtain certain sharp estimates and the exact set of variability involving Laurent and Taylor coefficients for concave functions. We also present the exact set of variability of the linear combination of certain successive Taylor coefficients of concave functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polygon is said to be a weak visibility polygon if every point of the polygon is visible from some point of an internal segment. In this paper we derive properties of shortest paths in weak visibility polygons and present a characterization of weak visibility polygons in terms of shortest paths between vertices. These properties lead to the following efficient algorithms: (i) an O(E) time algorithm for determining whether a simple polygon P is a weak visibility polygon and for computing a visibility chord if it exist, where E is the size of the visibility graph of P and (ii) an O(n2) time algorithm for computing the maximum hidden vertex set in an n-sided polygon weakly visible from a convex edge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the ergodic control for a controlled nondegenerate diffusion when m other (m finite) ergodic costs are required to satisfy prescribed bounds. Under a condition on the cost functions that penalizes instability, the existence of an optimal stable Markov control is established by convex analytic arguments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The set of attainable laws of the joint state-control process of a controlled diffusion is analyzed from a convex analytic viewpoint. Various equivalence relations depending on one-dimensional marginals thereof are defined on this set and the corresponding equivalence classes are studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the problem of constructing robust classifiers when the training is plagued with uncertainty. The problem is posed as a Chance-Constrained Program (CCP) which ensures that the uncertain data points are classified correctly with high probability. Unfortunately such a CCP turns out to be intractable. The key novelty is in employing Bernstein bounding schemes to relax the CCP as a convex second order cone program whose solution is guaranteed to satisfy the probabilistic constraint. Prior to this work, only the Chebyshev based relaxations were exploited in learning algorithms. Bernstein bounds employ richer partial information and hence can be far less conservative than Chebyshev bounds. Due to this efficient modeling of uncertainty, the resulting classifiers achieve higher classification margins and hence better generalization. Methodologies for classifying uncertain test data points and error measures for evaluating classifiers robust to uncertain data are discussed. Experimental results on synthetic and real-world datasets show that the proposed classifiers are better equipped to handle data uncertainty and outperform state-of-the-art in many cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An angle invariance property based on Hertz's principle of particle dynamics is employed to facilitate the surface-ray tracing on nondevelopable hybrid quadric surfaces of revolution (h-QUASOR's). This property, when used in conjunction with a Geodesic Constant Method, yields analytical expressions for all the ray-parameters required in the UTD formulation. Differential geometrical considerations require that some of the ray-parameters (defined heuristically in the UTD for the canonical convex surfaces) be modified before the UTD can be applied to such hybrid surfaces. Mutual coupling results for finite-dimensional slots have been presented as an example on a satellite launch vehicle modeled by general paraboloid of revolution and right circular cylinder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an algorithm for constructing the solid model (boundary representation) from pout data measured from the faces of the object. The poznt data is assumed to be clustered for each face. This algorithm does not require any compuiier model of the part to exist and does not require any topological infarmation about the part to be input by the user. The property that a convex solid can be constructed uniquely from geometric input alone is utilized in the current work. Any object can be represented a5 a combznatzon of convex solids. The proposed algorithm attempts to construct convex polyhedra from the given input. The polyhedra so obtained are then checked against the input data for containment and those polyhedra, that satisfy this check, are combined (using boolean union operation) to realise the solid model. Results of implementation are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the following question: Let S (1) and S (2) be two smooth, totally-real surfaces in C-2 that contain the origin. If the union of their tangent planes is locally polynomially convex at the origin, then is S-1 boolean OR S-2 locally polynomially convex at the origin? If T (0) S (1) a (c) T (0) S (2) = {0}, then it is a folk result that the answer is yes. We discuss an obstruction to the presumed proof, and provide a different approach. When dim(R)(T0S1 boolean AND T0S2) = 1, we present a geometric condition under which no consistent answer to the above question exists. We then discuss conditions under which we can expect local polynomial convexity.