51 resultados para CONTINUOUS VARIABLE SYSTEMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Euler–Bernoulli beams are distributed parameter systems that are governed by a non-linear partial differential equation (PDE) of motion. This paper presents a vibration control approach for such beams that directly utilizes the non-linear PDE of motion, and hence, it is free from approximation errors (such as model reduction, linearization etc.). Two state feedback controllers are presented based on a newly developed optimal dynamic inversion technique which leads to closed-form solutions for the control variable. In one formulation a continuous controller structure is assumed in the spatial domain, whereas in the other approach it is assumed that the control force is applied through a finite number of discrete actuators located at predefined discrete locations in the spatial domain. An implicit finite difference technique with unconditional stability has been used to solve the PDE with control actions. Numerical simulation studies show that the beam vibration can effectively be decreased using either of the two formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a systematic method of investigating the existence of limit cycle oscillations in feedback systems with combined integral pulse frequency-pulse width (IPF-P/V) modulation. The method is based on the non-linear discrete equivalence of the continuous feedback system containing the IPF-PW modulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the framework of a new relaxation system, which converts a nonlinear viscous conservation law into a system of linear convection-diffusion equations with nonlinear source terms, a finite variable difference method is developed for nonlinear hyperbolic-parabolic equations. The basic idea is to formulate a finite volume method with an optimum spatial difference, using the Locally Exact Numerical Scheme (LENS), leading to a Finite Variable Difference Method as introduced by Sakai [Katsuhiro Sakai, A new finite variable difference method with application to locally exact numerical scheme, journal of Computational Physics, 124 (1996) pp. 301-308.], for the linear convection-diffusion equations obtained by using a relaxation system. Source terms are treated with the well-balanced scheme of Jin [Shi Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, Mathematical Modeling Numerical Analysis, 35 (4) (2001) pp. 631-645]. Bench-mark test problems for scalar and vector conservation laws in one and two dimensions are solved using this new algorithm and the results demonstrate the efficiency of the scheme in capturing the flow features accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of a third order non-linear system subjected to a pulse excitation is analysed. A transformation of the displacement variable is effected. The transformation function chosen is the solution of the linear problem subjected to the same pulse. With this transformation the equation of motion is brought into a form in which the method of variation of parameters is applicable for the solution of the problem. The method is applied to a single axis gyrostabilized platform subjected to an exponentially decaying pulse. The analytical results are compared with digital and analog computer solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the design and bit-error performance analysis of linear parallel interference cancellers (LPIC) for multicarrier (MC) direct-sequence code division multiple access (DS-CDMA) systems. We propose an LPIC scheme where we estimate and cancel the multiple access interference (MAT) based on the soft decision outputs on individual subcarriers, and the interference cancelled outputs on different subcarriers are combined to form the final decision statistic. We scale the MAI estimate on individual subcarriers by a weight before cancellation. In order to choose these weights optimally, we derive exact closed-form expressions for the bit-error rate (BER) at the output of different stages of the LPIC, which we minimize to obtain the optimum weights for the different stages. In addition, using an alternate approach involving the characteristic function of the decision variable, we derive BER expressions for the weighted LPIC scheme, matched filter (MF) detector, decorrelating detector, and minimum mean square error (MMSE) detector for the considered multicarrier DS-CDMA system. We show that the proposed BER-optimized weighted LPIC scheme performs better than the MF detector and the conventional LPIC scheme (where the weights are taken to be unity), and close to the decorrelating and MMSE detectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzene drops were formed in continuous media of water and glycerine of varying physical properties. The effect on drop volumes of variables like volumetric flow-rate, interfacial tension, continuous phase viscosity and capillary diameter was studied. An equation has been developed, based on a two stage drop formation mechanism, which predicts drop volumes within an average error of 7 per cent for the range of physical properties employed in this investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous common mode feedback (CMFB) circuits having high input impedance and low distortion are proposed. The proposed circuits are characterized for 0.18 mu m CMOS process with 1.8 V supply. Simulation results indicate that the proposed common mode detector consumes no standby power and CMFB circuit consumes 27-34% less power than previous high swing CMFB circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variation of switching frequency over the entire operating speed range of an induction motor (M drive is the major problem associated with conventional two-level three-phase hysteresis controller as well as the space phasor based PWM hysteresis controller. This paper describes a simple hysteresis current controller for controlling the switching frequency variation in the two-level PWM inverter fed IM drives for various operating speeds. A novel concept of continuously variable hysteresis boundary of current error space phasor with the varying speed of the IM drive is proposed in the present work. The variable parabolic boundary for the current error space phasor is suggested for the first time in this paper for getting the switching frequency pattern with the hysteresis controller, similar to that of the constant switching frequency voltage-controlled space vector PWM (VC-SVPWM) based inverter fed IM drive. A generalized algorithm is also developed to determine parabolic boundary for controlling the switching frequency variation, for any IM load. Only the adjacent inverter voltage vectors forming a triangular sector, in which tip of the machine voltage vector ties, are switched to keep current error space vector within the parabolic boundary. The controller uses a self-adaptive sector identification logic, which provides smooth transition between the sectors and is capable of taldng the inverter up to six-step mode of operation, if demanded by drive system. The proposed scheme is simulated and experimentally verified on a 3.7 kW IM drive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notion of optimization is inherent in protein design. A long linear chain of twenty types of amino acid residues are known to fold to a 3-D conformation that minimizes the combined inter-residue energy interactions. There are two distinct protein design problems, viz. predicting the folded structure from a given sequence of amino acid monomers (folding problem) and determining a sequence for a given folded structure (inverse folding problem). These two problems have much similarity to engineering structural analysis and structural optimization problems respectively. In the folding problem, a protein chain with a given sequence folds to a conformation, called a native state, which has a unique global minimum energy value when compared to all other unfolded conformations. This involves a search in the conformation space. This is somewhat akin to the principle of minimum potential energy that determines the deformed static equilibrium configuration of an elastic structure of given topology, shape, and size that is subjected to certain boundary conditions. In the inverse-folding problem, one has to design a sequence with some objectives (having a specific feature of the folded structure, docking with another protein, etc.) and constraints (sequence being fixed in some portion, a particular composition of amino acid types, etc.) while obtaining a sequence that would fold to the desired conformation satisfying the criteria of folding. This requires a search in the sequence space. This is similar to structural optimization in the design-variable space wherein a certain feature of structural response is optimized subject to some constraints while satisfying the governing static or dynamic equilibrium equations. Based on this similarity, in this work we apply the topology optimization methods to protein design, discuss modeling issues and present some initial results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors have developed a simple continuous-cooling method to determine specific heat of liquids and solids in the temperature range 100-300 K. The technique employs very simple instrumentation and continuously records the sample temperature as it cools to the bath temperature through a calibrated heat link. They have obtained specific heat values which agree with the reported data to within 3% for the samples investigated. This method also facilitates easy detection of abrupt changes in specific heat, as demonstrated in the observation of glass transition in some organic glass-forming systems. The method is sensitive to the study of relaxing heat capacity in supercooled liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is possible to substitute Bi in the superconducting BaPb0.75Bi0.25O3 by Sb or Te without destroying the superconductivity. With Sb, a continuous series of solid solutions BaPb0.75Bi0.25?ySbyO3 (0 less-than-or-equals, slant y less-than-or-equals, slant 0.25) exists, while with Te, perovskite BaPb0.75Bi0.25?yTeyO3 exists only upto y = 0.15. With increasing substitution by Sb or Te, Tc decreases continously in both the systems. Superconductivity with a maximum Tc of 8K is found in Ba0.9La0.1Pb0.9?yBiyTl0.1O3 for y = 0.25.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A linear state feedback gain vector used in the control of a single input dynamical system may be constrained because of the way feedback is realized. Some examples of feedback realizations which impose constraints on the gain vector are: static output feedback, constant gain feedback for several operating points of a system, and two-controller feedback. We consider a general class of problems of stabilization of single input dynamical systems with such structural constraints and give a numerical method to solve them. Each of these problems is cast into a problem of solving a system of equalities and inequalities. In this formulation, the coefficients of the quadratic and linear factors of the closed-loop characteristic polynomial are the variables. To solve the system of equalities and inequalities, a continuous realization of the gradient projection method and a barrier method are used under the homotopy framework. Our method is illustrated with an example for each class of control structure constraint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process control systems are designed for a closed-loop peak magnitude of 2dB, which corresponds to a damping coefficient () of 0.5 approximately. With this specified constraint, the designer should choose and/or design the loop components to maintain a constant relative stability. However, the manipulative variable in almost all chemical processes will be the flow rate of a process stream. Since the gains and the time constants of the process will be functions of the manipulative variable, a constant relative stability cannot be maintained. Up to now, this problem has been overcome either by selecting proper control valve flow characteristics or by gain scheduling of controller parameters. Nevertheless, if a wrong control valve selection is made then one has to account for huge loss in controllability or eventually it may lead to an unstable control system. To overcome these problems, a compensator device that can bring back the relative stability of the control system was proposed. This compensator is similar to a dynamic nonlinear controller that has both online and offline information on several factors related to the control system. The design and analysis of the proposed compensator is discussed in this article. Finally, the performance of the compensator is validated by applying it to a two-tank blending process. It has been observed that by using a compensator in the process control system, the relative stability could be brought back to a great extent despite the effects of changes in manipulative flow rate.