48 resultados para CLOUDS
Resumo:
This article examines, through a molecular perspective, the 'ozone-friendly' refrigerants R-134a and R-123 vis-Ã -vis R-12 and R-11, which are targeted to be phased out under the Montreal Protocol on Substances that Deplete the Ozone Layer, Final Act (1987). It appears that the molecular weight, size parameter, and dipole moment, of R-134a and R-123, may induce a pronounced effect on the chemical equilibrium of ice particles in the polar stratospheric clouds and subsequently influence the photochemical reactions therein. Non-polar, high-molecular-weight perfluoropropane (R-218), could be a better substitute for R-12, while R-134, which is a non-polar HFC of the ethane family, could also be a candidate although its molecular weight is lower than that of R-12. The search for a good substitute for R-11, however, must continue.
Resumo:
The paper furnishes a review and air ovendepr "f radio noise *om lightning as rr so~irce of interference to analogue and digital Corn?tunicatioiz. The parameters of fhe different fornls < f, noise necessary .for pssessigth e interfering effect of the rloise are described. 4railublr irfjrncroiun thrr tndevstor71zs, thunder-clouds, convecrion cells and lightning are er ieveadn d their liizitatimsp ointed oui. Thew fol101r.s a descripiicn of how the source, popugafiona nd receiver chaacteristidse termine the sfrticture qf a/rnosplro.ic noise as receiwd at a point of observation. The tratrrral unit for this noise i.s the mise burst rtrising from o w complete lightning.flas4. The pmuneters of the nrise birrst as a 11.hole and its structure ctetennine the inrqfflrrence enrirnniient. A hisforic reriel$. qf t2sophericii oke .studies sho1(5 that it i. wrreirt(v of importance oldy in thc ropicarl egions of' the wr ldf i>rs hichf hc neailable data are wry defective. New data are ficnrished. The contribution of atmospheric noise for backgrouzd interference even in remote places ,for r.adicj astronomy at VHF is firrnished. The imporlance of aimcspizeric nctise cceurring ;vporadiea@ in high values fur slzort inier.als at VHF and higher frequencies in the tropics is brought out.
Resumo:
The information on altitude distribution of aerosols in the atmosphere is essential in assessing the impact of aerosol warming on thermal structure and stability of the atmosphere.In addition, aerosol altitude distribution is needed to address complex problems such as the radiative interaction of aerosols in the presence of clouds. With this objective,an extensive, multi-institutional and multi-platform field experiment (ICARB-Integrated Campaign for Aerosols, gases and Radiation Budget) was carried out under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP) over continental India and adjoining oceans during March to May 2006. Here, we present airborne LIDAR measurements carried out over the east Coast of the India during the ICARB field campaign. An increase in aerosol extinction (scattering + absorption) was observed from the surface upwards with a maximum around 2 to 4 km. Aerosol extinction at higher atmospheric layers (>2 km) was two to three times larger compared to that of the surface. A large fraction (75-85%) of aerosol column optical depth was contributed by aerosols located above 1 km. The aerosol layer heights (defined in this paper as the height at which the gradient in extinction coefficient changes sign) showed a gradual decrease with an increase in the offshore distance. A large fraction (60-75%) of aerosol was found located above clouds indicating enhanced aerosol absorption above clouds. Our study implies that a detailed statistical evaluation of the temporal frequency and spatial extent of elevated aerosol layers is necessary to assess their significance to the climate. This is feasible using data from space-borne lidars such as CALIPSO,which fly in formation with other satellites like MODIS AQUA and MISR, as part of the A-Train constellation.
Resumo:
We have compared the spectral aerosol optical depth (AOD) and aerosol fine mode fraction (AFMF) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) with those of Aerosol Robotic Network (AERONET) at Kanpur (26.45N, 80.35E), northern India for the pre-monsoon season (March to June, 2001-2005). We found that MODIS systematically overestimates AOD during pre-monsoon season (known to be influenced by dust transport from north-west of India). The errors in AOD were correlated with the MODIS top-of-atmosphere apparent surface reflectance in 2.1 mu m channel (rho*(2.1)). MODIS aerosol algorithm uses p*(2.1) to derive the surface reflectance in visible channels (rho(0.47), rho(0.66)) using an empirical mid IR-visible correlation (rho(0.47) = rho(2.1)/4, rho(0.66) = rho(2.1)/2). The large uncertainty in estimating surface reflectance in visible channels (Delta rho(0.66)+/- 0.04, Delta rho(0.47)+/- 0.02) at higher values of p*(2.1) (p*(2.1) > 0.18) leads to higher aerosol contribution in the total reflected radiance at top-of atmosphere to compensate for the reduced surface reflectance in visible channels and thus leads to overestimation of AOD. This was also reflected in the very low values of AFMF during pre-monsoon whose accuracy depends on the aerosol path radiance in 0.47 and 0.66 mu m channels and aerosol models. The errors in AOD were also high in the scattering angle range 110 degrees-140 degrees, where the effect of dust non-spherity on its optical properties is significant. The direct measurements of spectral surface reflectance are required over the Indo-Gangetic basin in order to validate the mid IR-visible relationship. MODIS aerosol models should also be modified to incorporate the effect of non-spherity of dust aerosols.
A numerical study of the role of the vertical structure of vorticity during tropical cyclone genesis
Resumo:
An eight-level axisymmetric model with simple parameterizations for clouds and the atmospheric boundary layer was developed to examine the evolution of vortices that are precursors to tropical cyclones. The effect of vertical distributions of vorticity, especially that arising from a merger of mid-level vortices, was studied by us to provide support for a new vortex-merger theory of tropical cyclone genesis. The basic model was validated with the analytical results available for the spin-down of axisymmetric vortices. With the inclusion of the cloud and boundary layer parameterizations, the evolution of deep vortices into hurricanes and the subsequent decay are simulated quite well. The effects of several parameters such as the initial vortex strength, radius of maximum winds, sea-surface temperature and latitude (Coriolis parameter) on the evolution were examined. A new finding is the manner in which mid-level vortices of the same strength decay and how, on simulated merger of these mid-level vortices, the resulting vortex amplifies to hurricane strength in a realistic time frame. The importance of sea-surface temperature on the evolution of full vortices was studied and explained. Also it was found that the strength of the surface vortex determines the time taken by the deep vortex to amplify to hurricane strength.
Resumo:
An attempt to diagnose the dominant forcings which drive the large-scale vertical velocities over the monsoon region has been made by computing the forcings like diabatic heating fields,etc. and the large-scale vertical velocities driven by these forcings for the contrasting periods of active and break monsoon situations; in order to understand the rainfall variability associated with them. Computation of diabatic heating fields show us that among different components of diabatic heating it is the convective heating that dominates at mid-tropospheric levels during an active monsoon period; whereas it is the sensible heating at the surface that is important during a break period. From vertical velocity calculations we infer that the prime differences in the large-scale vertical velocities seen throughout the depth of the atmosphere are due to the differences in the orders of convective heating; the maximum rate of latent heating being more than 10 degrees Kelvin per day during an active monsoon period; whereas during a break monsoon period it is of the order of 2 degrees Kelvin per day at mid-tropospheric levels. At low levels of the atmosphere, computations show that there is large-scale ascent occurring over a large spatial region, driven only by the dynamic forcing associated with vorticity and temperature advection during an active monsoon period. However, during a break monsoon period such large-scale spatial organization in rising motion is not seen. It is speculated that these differences in the low-level large-scale ascent might be causing differences in convective heating because the weaker the low level ascent, the lesser the convective instability which produces deep cumulus clouds and hence lesser the associated latent heat release. The forcings due to other components of diabatic heating, namely, the sensible heating and long wave radiative cooling do not influence the large-scale vertical velocities significantly.
Resumo:
We propose a physical mechanism to explain the origin of the intense burst of massive-star formation seen in colliding/merging, gas-rich, field spiral galaxies. We explicitly take account of the different parameters for the two main mass components, H-2 and H I, of the interstellar medium within a galaxy and follow their consequent different evolution during a collision between two galaxies. We also note that, in a typical spiral galaxy-like our galaxy, the Giant Molecular Clouds (GMCs) are in a near-virial equilibrium and form the current sites of massive-star formation, but have a low star formation rate. We show that this star formation rate is increased following a collision between galaxies. During a typical collision between two field spiral galaxies, the H I clouds from the two galaxies undergo collisions at a relative velocity of approximately 300 km s-1. However, the GMCs, with their smaller volume filling factor, do not collide. The collisions among the H I clouds from the two galaxies lead to the formation of a hot, ionized, high-pressure remnant gas. The over-pressure due to this hot gas causes a radiative shock compression of the outer layers of a preexisting GMC in the overlapping wedge region. This makes these layers gravitationally unstable, thus triggering a burst of massive-star formation in the initially barely stable GMCs.The resulting value of the typical IR luminosity from the young, massive stars from a pair of colliding galaxies is estimated to be approximately 2 x 10(11) L., in agreement with the observed values. In our model, the massive-star formation occurs in situ in the overlapping regions of a pair of colliding galaxies. We can thus explain the origin of enhanced star formation over an extended, central area approximately several kiloparsecs in size, as seen in typical colliding galaxies, and also the origin of starbursts in extranuclear regions of disk overlap as seen in Arp 299 (NGC 3690/IC 694) and in Arp 244 (NGC 4038/39). Whether the IR emission from the central region or that from the surrounding extranuclear galactic disk dominates depends on the geometry and the epoch of the collision and on the initial radial gas distribution in the two galaxies. In general, the central starburst would be stronger than that in the disks, due to the higher preexisting gas densities in the central region. The burst of star formation is expected to last over a galactic gas disk crossing time approximately 4 x 10(7) yr. We can also explain the simultaneous existence of nearly normal CO galaxy luminosities and shocked H-2 gas, as seen in colliding field galaxies.This is a minimal model, in that the only necessary condition for it to work is that there should be a sufficient overlap between the spatial gas distributions of the colliding galaxy pair.
Resumo:
We consider the hydrodynamic evolution of gas in the interstellar medium of the host galaxy of a quasar due to Compton heating by the QSO radiation. We show that a Lagrangean formulation of the problem is necessary. It is found that the "hydrodynamic time scale" becomes important compared to the Compton heating time scale. We also relax the "single fluid" approximation by considering the existence of clouds and taking into account the mass loss from stars. The results predict star burst activity, and thus we explain the blue colors of the active galaxies.
Resumo:
The restricted three-body method is used to model the effect of the mean tidal field of a cluster of galaxies on the internal dynamics of a disk galaxy falling into the cluster for the first time. In the model adopted the galaxy experiences a tidal field that is compressive within the core of the cluster. The planar random velocities of all components in the disk increase after the galaxy passes through the core of the cluster. The low-velocity dispersion gas clouds experience a relatively larger increase in random velocity than the hotter stellar components. The increase in planar velocities results in a strong anisotropy between the planar and vertical velocity dispersions. It is argued that this will make the disk unstable to the 'fire-hose instability' which leads to bending modes in the disk and which will thicken the disk slightly. The mean tidal fields in rich clusters were probably stronger during the epoch of cluster formation and relaxation than they are in present-day relaxed clusters.
Resumo:
The 21st century poses many challenges for global sustainability. Among them, most importantly, the human race will encounter scarcity of raw materials and conventional energy resources. And, India may have to take the brunt of these problems as it is going to be the most populated region of the world with concomitant increase in energy demand and requirement of other resources. India will be the testing ground for introducing newer ways of green technology and innovative principles of resource management and utilization. With the vagaries of potential climate change gathering clouds in the background, Earth sciences will have a special and predominant role in guiding the society in prioritizing our resource discovery, utilization and their consumption and the upkeep of environment. On the fundamental level, Earth sciences are going through a most exciting phase of development as a born-again science. Technological breakthroughs including the satellite-based observations augur well for gaining new insights into Earth processes. A set of exciting fundamental problems that are globally identified will set the stage for an exhilarating period of new discoveries. Improvements in numerical and computer-based techniques will assist in modelling of Earth processes to unprecedented levels. India will have to take special effort in improving the existing experimentation facilities in the Earth science departments of the country, and also the general level of Earth science education to meet the global standards. This article presents an Earth science vision for the 21st century in an Indian context.
Resumo:
We present observations of the C270alpha carbon recombination line, 21 cm neutral hydrogen line and (CO)-C-12 (J = 1 --> 0) molecular line toward Cas A. A comparison of the distribution of recombination line optical depths over the face of Cas A with that of H I optical depths and molecular line emission favors the association of C270alpha regions with H I rather than molecular clouds. The association makes it possible to self-consistently determine several physical parameters of the clouds by combining the recombination line and 21 cm H I measurements.
Resumo:
We present observations of low-frequency recombination lines of carbon toward Cas A near 34.5 MHz (n similar to 575) using the Gauribidanur radio telescope and near 560 MHz (n similar to 225) and 770 MHz (n similar to 205) using the NRAO 140 foot (43 m) telescope in Greenbank. We also present high angular resolution (1') observations of the C270 alpha line near 332 MHz using the Very Large Array in B-configuration. A high signal-to-noise ratio spectrum is obtained at 34.5 MHz, which clearly shows a Voigt profile with distinct Lorentzian wings, resulting from significant pressure and radiation broadening at such high quantum numbers. The emission lines detected near 332, 550, and 770 MHz, on the other hand, are narrow and essentially Doppler-broadened. The measured Lorentzian width at 34.5 MHz constrains the allowed combinations of radiation temperature, electron density, and electron temperature in the line-forming region. Radiation broadening at 34.5 MHz places a lower limit of 115 pc on the separation between Cas A and the line-forming clouds. Modeling the variation in the integrated line-to-continuum ratio with frequency indicates that the region is likely to be associated with the cold atomic hydrogen component of the interstellar medium, and the physical properties of this region are likely to be T-e = 75 K, n(e) = 0.02 cm(-3), T-R100 = 3200 K, and n(H) T-e = 10,000 cm(-3) K. Comparison of the distribution of the C270 alpha recombination line emission across Cas A with that of (CO)-C-12 and H I also supports the above conclusion.
Resumo:
Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.
Resumo:
This paper describes the results of the measurement of the Marine Boundary Layer (MBL) height from spectral analysis of the u and v components of the wind and from CLASS/radiosonde temperature profiles. The data were collected on ORV Sagar Kanya during the pre-INDOEX (27 December 1996 through 31 January 1997) and FFP-98 (18 February to 31 March 1998) over the latitude range 15 degrees N to 14 degrees S and 15 degrees N to 20 degrees S respectively. During the pre-INDOEX, the MBL heights gradually decrease from 2.5 km at 13 degrees N to around 500 to 600 m at 10 degrees S, Similar results are observed in the return track. The MBL heights (0.5 to 1 km) obtained during FFP-98 are less compared to those obtained during pre-INDOEX. The MBL heights during FFP-98 are less compared to the pre-INDOEX and are believed to be due to the presence of stratus, stratocumulus and cumulus clouds during the cruise period, compared to a relatively cloud free pre-INDOEX cruise.
Resumo:
We propose a physical mechanism for the triggering of starbursts in interacting spiral galaxies by shock compression of the pre-existing disk giant molecular clouds (GMCs). We show that as a disk GMC tumbles into the central region of a galaxy following a galactic tidal encounter, it undergoes a radiative shock compression by the pre-existing high pressure of the central molecular intercloud medium. The shocked outer shell of a GMC becomes gravitationally unstable, which results in a burst of star formation in the initially stable GMC. In the case of colliding galaxies with physical overlap such as Arp 244, the cloud compression is shown to occur due to the hot, high-pressure remnant gas resulting from the collisions of atomic hydrogen gas clouds from the two galaxies. The resulting values of infrared luminosity agree with observations. The main mode of triggered star formation is via clusters of stars, thus we can naturally explain the formation of young, luminous star clusters observed in starburst galaxies.