138 resultados para CHARGE CONTROL MODEL
Resumo:
Surface-potential-based compact charge models for symmetric double-gate metal-oxide-semiconductor field-effect transistors (SDG-MOSFETs) are based on the fundamental assumption of having equal oxide thicknesses for both gates. However, for practical devices, there will always be some amount of asymmetry between the gate oxide thicknesses due to process variations and uncertainties, which can affect device performance significantly. In this paper, we propose a simple surface-potential-based charge model, which is applicable for tied double-gate MOSFETs having same gate work function but could have any difference in gate oxide thickness. The proposed model utilizes the unique so-far-unexplored quasi-linear relationship between the surface potentials along the channel. In this model, the terminal charges could be computed by basic arithmetic operations from the surface potentials and applied biases, and thus, it could be implemented in any circuit simulator very easily and extendable to short-channel devices. We also propose a simple physics-based perturbation technique by which the surface potentials of an asymmetric device could be obtained just by solving the input voltage equation of SDG devices for small asymmetry cases. The proposed model, which shows excellent agreement with numerical and TCAD simulations, is implemented in a professional circuit simulator through the Verilog-A interface and demonstrated for a 101-stage ring oscillator simulation. It is also shown that the proposed model preserves the source/drain symmetry, which is essential for RF circuit design.
Resumo:
We develop a Markov model for a TCP CUBIC connection. Next we use it to obtain approximate expressions for throughput when there may be queuing in the network. Finally we provide the throughputs different TCP CUBIC and TCP NewReno connections obtain while sharing a channel when they may have different round trip delays and packet loss probabilities.
Resumo:
Classical control and one cycle control of current are popular methods used to modulate pulses in active rectifiers for ac-dc power conversion. One cycle control has lower control complexity and can be implemented using linear analog circuits when compared with the classical approach. However, it also suffers from problems such as instability and offsets in current that is severe at light load conditions. A control strategy for bidirectional boost rectifiers based on one cycle control of charge is proposed for that overcomes these limitations. The integral of sensed current, which represents charge, is compared with a non-linear carrier, which is modified for ac-dc power conversion. This generates the gating signals for the switching devices. The modifications required for the control law governing one cycle control of charge is derived in the paper. Detailed simulation studies are carried out to compare one cycle control of current with the proposed method for ac-dc power conversion, which are validated on a laboratory hardware prototype.
Resumo:
With the unique quasi-linear relationship between the surface potentials along the channel, recently we have proposed a quasi-static terminal charge model for common double-gate MOSFETs, which might have asymmetric gate oxide thickness. In this brief, we extend this concept to develop the nonquasi-static (NQS) charge model for the same by solving the governing continuity equations. The proposed NQS model shows good agreement against TCAD simulations and appears to be useful for efficient circuit simulation.
Resumo:
In order to reduce the motion artifacts in DSA, non-rigid image registration is commonly used before subtracting the mask from the contrast image. Since DSA registration requires a set of spatially non-uniform control points, a conventional MRF model is not very efficient. In this paper, we introduce the concept of pivotal and non-pivotal control points to address this, and propose a non-uniform MRF for DSA registration. We use quad-trees in a novel way to generate the non-uniform grid of control points. Our MRF formulation produces a smooth displacement field and therefore results in better artifact reduction than that of registering the control points independently. We achieve improved computational performance using pivotal control points without compromising on the artifact reduction. We have tested our approach using several clinical data sets, and have presented the results of quantitative analysis, clinical assessment and performance improvement on a GPU. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Using the numerical device simulation we show that the relationship between the surface potentials along the channel in any double gate (DG) MOSFET remains invariant in QS (quasistatic) and NQS (nonquasi-static) condition for the same terminal voltages. This concept along with the recently proposed `piecewise charge linearization' technique is then used to develop the intrinsic NQS charge model for a Independent DG (IDG) MOSFET by solving the governing continuity equation. It is also demonstrated that unlike the usual MOSFET transcapacitances, the inter-gate transcapacitance of a IDG-MOSFET initially increases with the frequency and then saturates, which might find novel analog circuit application. The proposed NQS model shows good agreement with numerical device simulations and appears to be useful for efficient circuit simulation.
Resumo:
The recently developed reference-command tracking version of model predictive static programming (MPSP) is successfully applied to a single-stage closed grinding mill circuit. MPSP is an innovative optimal control technique that combines the philosophies of model predictive control (MPC) and approximate dynamic programming. The performance of the proposed MPSP control technique, which can be viewed as a `new paradigm' under the nonlinear MPC philosophy, is compared to the performance of a standard nonlinear MPC technique applied to the same plant for the same conditions. Results show that the MPSP control technique is more than capable of tracking the desired set-point in the presence of model-plant mismatch, disturbances and measurement noise. The performance of MPSP and nonlinear MPC compare very well, with definite advantages offered by MPSP. The computational speed of MPSP is increased through a sequence of innovations such as the conversion of the dynamic optimization problem to a low-dimensional static optimization problem, the recursive computation of sensitivity matrices and using a closed form expression to update the control. To alleviate the burden on the optimization procedure in standard MPC, the control horizon is normally restricted. However, in the MPSP technique the control horizon is extended to the prediction horizon with a minor increase in the computational time. Furthermore, the MPSP technique generally takes only a couple of iterations to converge, even when input constraints are applied. Therefore, MPSP can be regarded as a potential candidate for online applications of the nonlinear MPC philosophy to real-world industrial process plants. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Huntington's disease (HD) is an autosomal dominant disorder of central nervous system caused by expansion of CAG repeats in exon1 of the huntingtin gene (Htt). Among various dysfunctions originated from the mutation in Htt gene, transcriptional deregulation has been considered to be one of the most important abnormalities. Large numbers of investigations identified altered expressions of genes in brains of HD patients and many models of HD. In this study we employed 2D SDS-PAGE/MALDI-MS coupled with 2D-DIGE and real-time PCR experiments of an array of genes focused to HD pathway to determine altered protein and gene expressions in STHdh(Q111)/Hdh(Q111) cells, a cell model of HD and compared with STHdh(Q7)/Hdh(Q7) cells, its wild type counterpart. We annotated 76 proteins from these cells and observed differential expressions of 31 proteins (by 2D-DIGE) involved in processes like unfolded protein binding, negative regulation of neuron apoptosis, response to superoxides etc. Our PCR array experiments identified altered expressions of 47 genes. Altogether significant alteration of 77 genes/proteins could be identified in this HD cell line with potential relevance to HD biology. Biological significance: In this study we intended to find out differential proteomic and genomic profiles in HD condition. We used the STHdh cells, a cellular model for HD and control. These are mouse striatal neuronal cell lines harboring 7 and 111 knock -in CAG repeats in their two alleles. The 111Q containing cell line (STHdh(Q111)/Hdh(Q111)) mimics diseased condition, whereas the 7Q containing ones (STHdh(Q7)/Hdh(Q7)), serves as the proper control cell line. Proteomic experiments were performed earlier to obtain differential expressions of proteins in R6/2 mice models, Hdh(Q) knock -in mice and in plasma and CSF from HD patients. However, no earlier report on proteomic alterations in these two HD cell lines and control was available in literature. It was, therefore, an important objective to find out differential expressions of proteins in these two cell lines. In this study, we annotated 76 proteins from STHdh(Q7)/Hdh(Q7) and STHdh(Q111)/Hdh(Q111) cells using 2D-gel/mass spectrometry. Next, by performing 2D-DIGE, we observed differential expressions of 31 proteins (16 upregulated and 15 downregulated) between these two cell lines. We also performed customized qRT-PCR array focused to HD pathway and found differential expressions of 47 genes (8 gene exptessions increased and 39 genes were decreased significantly). A total of 77 genes/proteins (Htt downregulated in both the studies) were found to be significantly altered from both the experimental paradigms. We validated the differential expressions of Vim, Hypk, Ran, Dstn, Hspa5 and Sod2 either by qRT-PCR or Western blot analysis or both. Out of these 77, similar trends in alteration of 19 out of 31 and 38 out of 47 proteins/genes were reported in earlier studies. Thus our study confirmed earlier observations on differential gene/protein expressions in HD and are really useful. Additionally, we observed differential expression of some novel genes/proteins. One of this was Hypk, a Htt-interacting chaperone protein with the ability to solubilize mHtt aggregated structures in cell lines. We propose that downregulation of Hypk in STHdh-Qm (Q111)/Hdh(Q111) has a causal effect towards HD pathogenesis. Thus the novel findings from our study need further research and might be helpful to understand the molecular mechanism behind HD pathogenesis. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Magnetic atoms at surfaces are a rich model system for solid-state magnetic bits exhibiting either classical(1,2) or quantum(3,4) behaviour. Individual atoms, however, are difficult to arrange in regular patterns(1-5). Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment(6,7). Here, we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which enable chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that used in metallic thin films.
Resumo:
A fuzzy waste-load allocation model, FWLAM, is developed for water quality management of a river system using fuzzy multiple-objective optimization. An important feature of this model is its capability to incorporate the aspirations and conflicting objectives of the pollution control agency and dischargers. The vagueness associated with specifying the water quality criteria and fraction removal levels is modeled in a fuzzy framework. The goals related to the pollution control agency and dischargers are expressed as fuzzy sets. The membership functions of these fuzzy sets are considered to represent the variation of satisfaction levels of the pollution control agency and dischargers in attaining their respective goals. Two formulations—namely, the MAX-MIN and MAX-BIAS formulations—are proposed for FWLAM. The MAX-MIN formulation maximizes the minimum satisfaction level in the system. The MAX-BIAS formulation maximizes a bias measure, giving a solution that favors the dischargers. Maximization of the bias measure attempts to keep the satisfaction levels of the dischargers away from the minimum satisfaction level and that of the pollution control agency close to the minimum satisfaction level. Most of the conventional water quality management models use waste treatment cost curves that are uncertain and nonlinear. Unlike such models, FWLAM avoids the use of cost curves. Further, the model provides the flexibility for the pollution control agency and dischargers to specify their aspirations independently.
Resumo:
Regenerable 'gel-coated' cationic resins with fast sorption kinetics and high sorption capacity have application potential for removal of trace metal ions even in large-scale operations. Poly(acrylic acid) has been gel-coated on high-surface area silica (pre-coated with ethylene-vinyl acetate copolymer providing a thin barrier layer) and insolubilized by crosslinking with a low-molecular-weight diepoxide (epoxy equivalent 180 g) in the presence of benzyl dimethylamine catalyst at 70 degrees C, In experiments performed for Ca2+ sorption from dilute aqueous solutions of Ca(NO,),, the gel-coated acrylic resin is found to have nearly 40% higher sorption capacity than the bead-form commercial methacrylic resin Amberlite IRC-50 and also several limes higher rate of sorption. The sorption on the gel-coated sorbent under vigorous agitation has the characteristics of particle diffusion control with homogeneous (gel) diffusion in resin phase. A new mathematical model is proposed for such sorption on gel-coated ion-exchange resin in finite bath and solved by applying operator-theoretic methods. The analytical solution so obtained shows goad agreement with experimental sorption kinetics at relatively low levels (< 70%) of resin conversion.
Resumo:
The effect of Surface lipopolysaccharides (LPS) on the electrophoretic softness and fixed charge density in the ion-penetrable layer of Acidithiobacillus ferrooxidans cells grown in presence of copper or arsenic ions have been discussed, The electrophoretic mobility data were analyzed using the soft-particle electrophoresis theory. Cell surface potentials of all the strains based on soft-particle theory were lower than those estimated using the conventional Smoluchowski theory, Exposure to metal ions increased the Surface electrophoretic softness with decrease in the fixed charge density. Effect of cell surface lipopolysaccharides on the model parameters are investigated and discussed.
Resumo:
In this paper two nonlinear model based control algorithms have been developed to monitor the magnetorheological (MR) damper voltage. The main advantage of the proposed algorithms is that it is possible to directly monitor the voltage required to control the structural vibration considering the effect of the supplied and commanded voltage dynamics of the damper. The efficiency of the proposed techniques has been shown and compared taking an example of a base isolated three-storey building under a set of seismic excitations. Comparison of the performances with a fuzzy based intelligent control algorithm and a widely used clipped optimal strategy has also been shown.
Resumo:
A comparative investigation of charge transport properties is presented, for polymeric [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)], single-wall carbon nanotube (SWNT) and inorganic (indium tin oxide, ITO), transparent conducting electrodes. The polymeric and nanotube systems show hopping transport at low temperatures, in contrast with the disordered-metal transport in ITO. The low temperature magnetotransport (up to 11 T) and high electric-field transport (up to 500 V/cm) indicate the significant role of nanoscopic scale disorder for charge transport in polymer and nanotube based systems. The results show that characteristic length scales like localization length correlates with the nanomorphology in these systems. Further, the high frequency conductivity measurements (up to 30 MHz) in PEDOT:PSS and SWNT follow the extended pair approximation model [σ(ω)=σ(0)[1+(ω/ω0)s].
Resumo:
Experimental results on a loop heat pipe, using R134a as the working fluid, indicates that the liquid inventory in the compensation chamber can significantly influence the operating characteristics. The large liquid inventory in the compensation chamber, under terrestrial conditions, can result in loss of thermal coupling between the compensation chamber and the evaporator core. This causes the operating temperature to increase monotonically. This phenomenon, which has been experimentally observed, is reported in this paper. A theoretical model to predict the steady-state performance of a loop heat pipe with a weak thermal link between the compensation chamber and the core, as observed in the experiment, is also presented. The predicted and the experimentally determined temperatures correlate well.