128 resultados para CARBON FLOW


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supercritical carbon dioxide based Brayton cycle for possible concentrated solar power applications is investigated and compared with trans- and sub-critical operations of the same fluid. Thermal efficiency, specific work output and magnitude of irreversibility generation are used as some of the performance indicators. While the thermal efficiency increases almost linearly with low side pressure in the sub- and trans-critical cycles, it attains a maximum in the supercritical regime at 85 bar after which there are diminishing returns on increasing the low side pressure. It is also found that supercritical cycle is capable of producing power with a thermal efficiency of >30% even at a lower source temperature (820K) and accounting for foreseeable non-idealities albeit with a higher turbine inlet pressure (similar to 300 bar) which is not matched by a conventional sub-critical cycle even with a high source temperature of 978K. The reasons for lower efficiency than in an ideal cycle are extracted from an irreversibility analysis of components, namely, compressor, regenerator, turbine and gas cooler. Low sensitivity to the source temperature and extremely small volumetric flow rates in the supercritical cycle could offset the drawback of high pressures through a compact system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systematic experiments have been carried out by monitoring the in-situ pressure and thickness profiles for three different configurations, viz., flat plate, flat plate with a central circular hole, and an L-section using vacuum assisted resin transfer molding (VARTM) process. The effect of anisotropy on resin flow has been quantified by considering uni-directional carbon fiber preforms with 0 degrees and 90 degrees orientation to the flow direction for each configuration. A quasi-isotropic 45 degrees/0 degrees/-45 degrees/90 degrees](S) layup has also been included for flat plate case. Additionally, the study has been extended to understand the effect of using high permeability medium for each configuration. Fluid pressure profiles and thickness variation profiles have been obtained using an array of pressure sensors and linear variable differential transformers for each configuration. Experimental data reveal that anisotropy (due to changing fiber orientations), configuration, and gravity significantly change fluid pressure and displacement fields obtained during VARTM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study is made on the flow and heat transfer of a viscous fluid confined between two parallel disks. The disks are allowed to rotate with different time dependent angular velocities, and the upper disk is made to approach the lower one with a constant speed. Numerical solutions of the governing parabolic partial differential equations are obtained through a fourth-order accurate compact finite difference scheme. The normal forces and torques that the fluid exerts on the rotating surfaces are obtained at different nondimensional times for different values of the rate of squeezing and disk angular velocities. The temperature distribution and heat transfer are also investigated in the present analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical solutions of flow and heat transfer process on the unsteady flow of a compressible viscous fluid with variable gas properties in the vicinity of the stagnation line of an infinite swept cylinder are presented. Results are given for the case where the unsteady temperature field is produced by (i) a sudden change in the wall temperature (enthalpy) as the impulsive motion is started and (ii) a sudden change in the free-stream velocity. Solutions for the simultaneous development of the thermal and momentum boundary layers are obtained by using quasilinearization technique with an implicit finite difference scheme. Attention is given to the transient phenomenon from the initial flow to the final steady-state distribution. Results are presented for the skin friction and heat transfer coefficients as well as for the velocity and enthalpy profiles. The effects of wail enthalpy parameter, sweep parameter, fluid properties and transpiration cooling on the heat transfer and skin friction are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of amorphous carbon has been explored by molecular mechanics by examining the structures of species such as C84Hx and C150Hx, wherein the percentage of sp(3) carbons is progressively increased in a graphitic network. The nature of diamond-like carbon has been similarly investigated by examining the structures of C84Hx and C102Hx where the percentage of sp(2) carbons is varied in an sp(3) network. The dependence of the average coordination number as well as the sp(3)/sp(2) atom ratio on the atom fraction of hydrogen has been investigated in light of the random covalent network model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work studies the extent of asymmetric flow in water models of continuous casting molds of two different configurations. In the molds where fluid is discharged through multiple holes at the bottom, the flow pattern in the lower portion depends on the size of the lower two recirculating domains. If they reach the mold bottom, the flow pattern in the lower portion is symmetrical about the central plane; otherwise, it is asymmetrical. On the other hand, in the molds where the fluid is discharged through the entire mold cross section, the flow pattern is always asymmetrical if the aspect ratio is 1:6.25 or more. The fluid jet swirls while emerging through the nozzle. The interaction of the swirling Jets with the wide sidewalls of the mold gives rise to asymmetrical flow inside the mold. In the molds with lower aspect ratios, where the jets do not touch the wide side walls, the flow pattern is symmetrical about the central plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the magnetic field on the unsteady flow over a stretching surface in a rotating fluid has been studied. The unsteadiness in the flow field is due to the time-dependent variation of the velocity of the stretching surface and the angular velocity of the rotating fluid. The Navier-Stokes equations and the energy equation governing the flow and the heat transfer admit a self-similar solution if the velocity of the stretching surface and the angular velocity of the rotating fluid vary inversely as a linear function of time. The resulting system of ordinary differential equations is solved numerically using a shooting method. The rotation parameter causes flow reversal in the component of the velocity parallel to the strerching surface and the magnetic field tends to prevent or delay the flow reversal. The surface shear stresses dong the stretching surface and in the rotating direction increase with the rotation parameter, but the surface heat transfer decreases. On the other hand, the magnetic field increases the surface shear stress along the stretching surface, but reduces the surface shear stress in the rotating direction and the surface heat transfer. The effect of the unsteady parameter is more pronounced on the velocity profiles in the rotating direction and temperature profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady free convection boundary-layer flow in the forward stagnation-point region of a sphere, which is rotating with time-dependent angular velocity in an ambient fluid, has been studied. Both constant wall temperature and constant hear flux conditions have been considered. The non-linear coupled parabolic partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The skin friction and the heat transfer are enhanced by the buoyancy force. The effect of the buoyancy force is found to be more pronounced for smaller Prandtl numbers than for larger Prandtl numbers. For a given buoyancy force, the heat transfer increases with an increase in Prandtl number, but the skin friction decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady free convection flow in the stagnation-point region of a heated three-dimensional body placed in an ambient fluid is studied under boundary layer approximations. We have considered the case where there is an initial steady state that is perturbed by a step-change in the wall temperature. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using a finite difference scheme. The presented results show the temporal development of the momentum and thermal boundary layer characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When freshly starved amoebae of Dictyostelium discoideum are loaded with the Ca2+-specific dye indo-1/AM and analyzed in a fluorescence-activated cell sorter, they exhibit a quasi-bimodal distribution of fluorescence. This permits a separation of the population into two classes: H, or ''high Ca2+-indo-1 fluorescence,'' and L, or ''low Ca2+-indo-1 fluorescence.'' Simultaneous monitoring of Ca2+-indo-1 and Ca2+-chlortetracycline fluorescence shows that by and large the same cells tend to have high (or low) levels of both cytoplasmic and sequestered Ca2+. Next we label H cells with tetramethylrhodamine isothiocyanate (TRITC) and mix them in a 1:4 ratio with L cells, In the slugs that result, TRITC fluorescence is confined mainly to the anterior prestalk region. This implies that amoebae with relatively high Ca2+ at the vegetative stage tend to develop into prestalk cells and those with low Ca2+ into prespores. Polysphondylium violaceum, a cellular slime mold that does not possess prestalk and prespore cells, also does not display a Ca2+-dependent heterogeneity at the vegetative stage or in slugs. Finally, confirming earlier findings with the fluorophore fura-2 (Azhar ef al., Curr. Sci. 68, 337-342 (1995)), a prestalk-prespore difference in cellular Ca2+ is present in the cells of the slug in vivo. These findings are discussed in light of the possible roles of Ca2+ for cell differentiation in D. discoideum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adopting a two-temperature and two-velocity model, appropriate to a bidisperse porous medium (BDPM) proposed by Nield and Kuznetsov (2008), the classical steady, mixed convection boundary layer flow about a horizontal, isothermal circular cylinder embedded in a porous medium has been theoretically studied in this article. It is shown that the boundary layer analysis leads to expressions for the flow and heat transfer characteristics in terms of an inter-phase momentum parameter, a thermal diffusivity ratio, a thermal conductivity ratio, a permeability ratio, a modified thermal capacity ratio, and a buoyancy or mixed convection parameter. The transformed partial differential equations governing the flow and heat transfer in the f-phase (the macro-pores) and the p-phase (the remainder of the structure) are solved numerically using a very efficient implicit finite-difference technique known as Keller-box method. A good agreement is observed between the present results and those known from the open literature in the special case of a traditional Darcy formulation (monodisperse system).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find in complementary experiments and event-driven simulations of sheared inelastic hard spheres that the velocity autocorrelation function psi(t) decays much faster than t(-3/2) obtained for a fluid of elastic spheres at equilibrium. Particle displacements are measured in experiments inside a gravity-driven flow sheared by a rough wall. The average packing fraction obtained in the experiments is 0.59, and the packing fraction in the simulations is varied between 0.5 and 0.59. The motion is observed to be diffusive over long times except in experiments where there is layering of particles parallel to boundaries, and diffusion is inhibited between layers. Regardless, a rapid decay of psi(t) is observed, indicating that this is a feature of the sheared dissipative fluid, and is independent of the details of the relative particle arrangements. An important implication of our study is that the non-analytic contribution to the shear stress may not be present in a sheared inelastic fluid, leading to a wider range of applicability of kinetic theory approaches to dense granular matter.