284 resultados para Bulk glass


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influences of the amorphous matrix and crystalline dendrite phases on the hardness and elastic moduli of Zr/Ti-based bulk metallic glass matrix composites have been assessed. While the moduli of the composites correspond to those predicted by the rule of mixtures, the hardness of the composites is similar to that of the matrix, suggesting that the plastic flow in the composites under constrained conditions such as indentation is controlled by the flow resistance of the contiguous matrix. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Embrittlement of a bulk La-based metallic glass due to isothermal and isochronal annealing below the T-g was investigated. Results show that the impact toughness decreases with increasing annealing time or temperature, accompanied by a change in fracture morphology. Reasons for this are discussed in terms of structural relaxation. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The stability of a Pd40Cu30Ni10P20 bulk metallic glass (BMG) against structural relaxation is investigated by isothermal and isochronal annealing heat treatments below and above its glass transition temperature, Tg, for varying periods. Differential scanning calorimetry (DSC) of the annealed samples shows an excess endotherm at Tg, irrespective of the annealing temperature. This recovery peak evolves exponentially with annealing time and is due to the destruction of anneal-induced compositional short range ordering. The alloy exhibits a high resistance to crystallization on annealing below Tg and complex Pd- and Ni-phosphides evolve on annealing above Tg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electron beam welding technique was used to join Zr41Ti14Cu12Ni10Be23 bulk metallic glass (BMG) to crystalline pure Zr. Compositional, microstructural, and mechanical property variations across the welded interface were evaluated. It is shown that a crystalline layer develops close to the welding interface. Transmission electron microscopy of this layer indicates the crystalline phase to be tetragonal with lattice parameters close to that reported for Zr2Ni. However, the composition of this phase is different as it contains other alloying additions. The interface layer close to the bulk metallic glass side contains nanocrystalline Zr2Cu phase embedded in the glassy matrix. Nanoindentation experiments indicate that the hardness of the crystalline layer, although less than the bulk metallic glass, is more than the Zr itself. Commensurately, tensile tests indicate that the failure of the welded samples occurs at the Zr side rather than at the weld joint.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoindentation experiments were conducted on a Ni+ ion-irradiated Zr-based bulk metallic glass (BMG). The irradiation was carried out using 2.5, 5, 10 and 15 MeV ions and a flux of similar to 10(16) ions/cm(2). Post mortem imaging of the indents reveals a transition in the deformation mechanism of the irradiated regions from heterogeneous shear banding to homogeneous flow. Additionally, the load-displacement curves exhibit a transition from serrated to continuous flow with increasing severity of irradiation damage. The stress-strain response obtained from micro-pillar compression experiments complements the indentation response exhibiting a decrease in the flow stress and an `apparent' strain hardening at the lowest irradiation damage investigated, which is not observed in the as-cast alloy. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High temperature bonded interface indentation experiments are carried out on a Zr based bulk metallic glass (BMG) to examine the plastic deformation characteristics in subsurface deformation zone under a Vickers indenter. The results show that the shear bands are semi-circular in shape and propagate in radial direction. At all temperatures the inter-band spacing along the indentation axis is found to increase with increasing distance from the indenter tip. The average shear band spacing monotonically increases with temperature whereas the shear band induced plastic deformation zone is invariant with temperature. These observations are able to explain the increase in pressure sensitive plastic flow of BMGs with temperature. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The composites consisting of amorphous matrix reinforced with crystalline dendrites offer extraordinary combinations of strength, stiffness, and toughness and can be processed in bulk. Hence, they have been receiving intense research interest, with a primary focus to study their mechanical properties. In this paper, the temperature and strain rate effects on the uniaxial compression response of a tailored bulk metallic glass (BMG) composite has been investigated. Experimental results show that at temperatures ranging between ambient to 500 K and at all strain rates; the onset of plastic deformation in the composite is controlled by that in the dendrites. As the temperature is increased to the glass transition temperature of the matrix and beyond, flow in the amorphous matrix occurs readily and hence it dictates the composite's response. The role of the constituent phases in controlling the deformation mechanism of the composite has been verified by assessing the strain rate sensitivity and the activation volume for deformation. The composite is rate sensitive at room temperature with values of strain rate sensitivity and activation volume being similar to that of the dendrites. At test temperatures near to the glass transition temperature, the composite however becomes rate-insensitive corresponding to that of the matrix phase. At low strain rates, serrated flow akin to that of dynamic strain ageing in crystalline alloys was observed and the serration magnitude decreases with increasing temperature. Initiation of the shear bands at the dendrite/matrix interface and propagation of them through the matrix ligaments until their arrest at another interface is the responsible mechanism for this. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The size of the shear transformation zone (STZ) that initiates the elastic to plastic transition in a Zr-based bulk metallic glass was estimated by conducting a statistical analysis of the first pop-in event during spherical nanoindentation. A series of experiments led us to a successful description of the distribution of shear strength for the transition and its dependence on the loading rate. From the activation volume determined by statistical analysis the STZ size was estimated based on a cooperative shearing model. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Room temperature nanoindentation experiments, employing two different pyramidal (Berkovich and cube-corner) indenters, were performed on a Zr-based bulk metallic glass (BMG) to critically examine the possibility of indentation-induced nanocrystallization in BMGs. Cross-sectional transmission electron microscopy images obtained from high angle annular dark field ( HAADF) and high resolution (HR) modes clearly indicate to the occurrence of nanocrystallization. Pronounced nanocrystallite formation in the case of sharper cube-corner indenter suggests that the structural transformation is favored by the high strains introduced during nanoindentation. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present paper considers the formation of crystalline phases during solidification and crystallisation of the Zr53Cu21Al10Ni8Ti8 alloy. Solidification was carried out by a copper mould casting technique, which yielded a partially crystalline microstructure comprising a `big cube phase' in a dendritic morphology and a bct Zr2Ni phase. Detailed high-resolution microscopy was carried out to determine possible mechanisms for the formation of the crystalline phases. Based on microstructural examinations, it was established that the dendrites grew by the attachment of atomistic ledges. The bct Zr2Ni phase, formed during solidification and crystallisation, showed various types of faults depending on the crystallite size, and its crystallography was examined in detail. It has been shown that the presence of these faults could be explained by anti-site occupancy in the bct lattice of the Zr2Ni phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bulk metallic glass (BMG) matrix composites with crystalline dendrites as reinforcements exhibit a wide variance in their microstructures (and thus mechanical properties), which in turn can be attributed to the processing route employed, which affects the size and distribution of the dendrites. A critical investigation on the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify ``structure-property'' connections in these materials. This was accomplished by employing four different processing methods-arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat-on composites with two different dendrite volume fractions, V-d. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, lambda, and dendrite size, delta, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite's properties are insensitive to the microstructural length scales when V-d is high (similar to 75%), whereas they become process dependent for relatively lower V-d (similar to 55%). Larger delta in arc-melted and forged specimens result in higher ductility (7-9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer lambda result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The existence of an indentation size effect (ISE) in the onset of yield in a Zr-based bulk metallic glass (BMG) is investigated by employing spherical-tip nanoindentation experiments. Statistically significant data on the load at which the first pop-in in the displacement occurs were obtained for three different tip radii and in two different structural states (as-cast and structurally relaxed) of the BMG. Hertzian contact mechanics were employed to convert the pop-in loads to the maximum shear stress underneath the indenter. Results establish the existence of an ISE in the BMG of both structural states, with shear yield stress increasing with decreasing tip radius. Structural relaxation was found to increase the yield stress and decrease the variability in the data, indicating ``structural homogenization'' with annealing. Statistical analysis of the data was employed to estimate the shear transformation zone (STZ) size. Results of this analysis indicate an STZ size of similar to 25 atoms, which increases to similar to 34 atoms upon annealing. These observations are discussed in terms of internal structure changes that occur during structural relaxation and their interaction with the stressed volumes in spherical indentation of a metallic glass. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some bulk metallic glasses (BMGs) exhibit high crack initiation toughness due to shear band mediated plastic flow at the crack tip and yet do not display additional resistance to crack growth due to the lack of a microstructure. Thus, at crack initiation, the fracture behavior of BMGs transits from that of ductile alloys to that of brittle ceramics. In this paper, we attempt to understand the physics behind the characteristic length from the notch root at which this transition occurs, through testing of four-point bend specimens made of a nominally ductile Zr-based BMG in three different structural states. In the as-cast state, both symmetric (mode I) and asymmetric (mixed mode) bend specimens are tested. The process of shear band mediated plastic flow followed by crack initiation at the notch root was monitored through in situ imaging. Results show that stable crack growth occurs inside a dominant shear band through a distance of, similar to 60 mu m, irrespective of the structural state and mode mixity, before attaining criticality. Detailed finite element simulations show that this length corresponds to the distance from the notch root over which a positive hydrostatic stress gradient prevails. The mean ridge heights on fractured surfaces are found to correlate with the toughness of the BMG. The Argon and Salama model, which is based on the meniscus instability phenomenon at the notch root, is modified to explain the experimentally observed physics of fracture in ductile BMGs. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode I fracture experiments were conducted on brittle bulk metallic glass (BMG) samples and the fracture surface features were analyzed in detail to understand the underlying physical processes. Wollner lines, which result from the interaction between the propagating crack front and shear waves emanating from a secondary source, were observed on the fracture surface and geometric analysis of them indicates that the maximum crack velocity is similar to 800 m s(-1), which corresponds to similar to 0.32 times the shear wave speed. Fractography reveals that the sharp crack nucleation at the notch tip occurs at the mid-section of the specimens with the observation of flat and half-penny-shaped cracks. On this basis, we conclude that the crack initiation in brittle BMGs is stress-controlled and occurs through hydrostatic stress-assisted cavity nucleation ahead of the notch tip. High magnification scanning electron and atomic force microscopies of the dynamic crack growth regions reveal highly organized, nanoscale periodic patterns with a spacing of similar to 79 nm. Juxtaposition of the crack velocity with this spacing suggests that the crack takes similar to 10(-10) s for peak-to-peak propagation. This, and the estimated adiabatic temperature rise ahead of the propagating crack tip that suggests local softening, is utilized to critically discuss possible causes for the nanocorrugation formation. Taylor's fluid meniscus instability is unequivocally ruled out. Then, two other possible mechanisms, viz. (a) crack tip blunting and resharpening through nanovoid nucleation and growth ahead of the crack tip and eventual coalescence, and (b) dynamic oscillation of the crack in a thin slab of softened zone ahead of the crack-tip, are critically discussed. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal properties and electrical-switching behavior of semiconducting chalcogenide SbxSe55-xTe45 (2 <= x <= 9) glasses have been investigated by alternating differential scanning calorimetry and electrical-switching experiments, respectively. The addition of Sb is found to enhance the glass forming tendency and stability as revealed by the decrease in non-reversing enthalpy Delta H-nr. and an increase in the glass-transition width Delta T-g. Further, the glass-transition temperature of SbxSe55-xTe45 glasses, which is a measure of network connectivity, exhibits a subtle increase, suggesting a meager network growth with the addition of Sb. The crystallization temperature is also observed to increase with Sb content. The SbxSe55-xTe45 glasses (2 <= x <= 9) are found to exhibit memory type of electrical switching, which can be attributed to the polymeric nature of network and high devitrifying ability. The metallicity factor has been found to dominate over the network connectivity and rigidity in the compositional dependence of switching voltage. which shows a profound decrease with the addition of Sb.