120 resultados para Branch and bounds


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The max-coloring problem is to compute a legal coloring of the vertices of a graph G = (V, E) with a non-negative weight function w on V such that Sigma(k)(i=1) max(v epsilon Ci) w(v(i)) is minimized, where C-1, ... , C-k are the various color classes. Max-coloring general graphs is as hard as the classical vertex coloring problem, a special case where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring abroad class of trees and show it can be solved in time O(vertical bar V vertical bar+time for sorting the vertex weights). When vertex weights belong to R, we show a matching lower bound of Omega(vertical bar V vertical bar log vertical bar V vertical bar) in the algebraic computation tree model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarily. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can be included in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K-l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transfer function coefficients (TFC) are widely used to test linear analog circuits for parametric and catastrophic faults. This paper presents closed form expressions for an upper bound on the defect level (DL) and a lower bound on fault coverage (FC) achievable in TFC based test method. The computed bounds have been tested and validated on several benchmark circuits. Further, application of these bounds to scalable RC ladder networks reveal a number of interesting characteristics. The approach adopted here is general and can be extended to find bounds of DL and FC of other parametric test methods for linear and non-linear circuits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We generalize the Nozieres-Schmitt-Rink method to study the repulsive Fermi gas in the absence of molecule formation, i.e., in the so-called ``upper branch.'' We find that the system remains stable except close to resonance at sufficiently low temperatures. With increasing scattering length, the energy density of the system attains a maximum at a positive scattering length before resonance. This is shown to arise from Pauli blocking which causes the bound states of fermion pairs of different momenta to disappear at different scattering lengths. At the point of maximum energy, the compressibility of the system is substantially reduced, leading to a sizable uniform density core in a trapped gas. The change in spin susceptibility with increasing scattering length is moderate and does not indicate any magnetic instability. These features should also manifest in Fermi gases with unequal masses and/or spin populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estimating program worst case execution time(WCET) accurately and efficiently is a challenging task. Several programs exhibit phase behavior wherein cycles per instruction (CPI) varies in phases during execution. Recent work has suggested the use of phases in such programs to estimate WCET with minimal instrumentation. However the suggested model uses a function of mean CPI that has no probabilistic guarantees. We propose to use Chebyshev's inequality that can be applied to any arbitrary distribution of CPI samples, to probabilistically bound CPI of a phase. Applying Chebyshev's inequality to phases that exhibit high CPI variation leads to pessimistic upper bounds. We propose a mechanism that refines such phases into sub-phases based on program counter(PC) signatures collected using profiling and also allows the user to control variance of CPI within a sub-phase. We describe a WCET analyzer built on these lines and evaluate it with standard WCET and embedded benchmark suites on two different architectures for three chosen probabilities, p={0.9, 0.95 and 0.99}. For p= 0.99, refinement based on PC signatures alone, reduces average pessimism of WCET estimate by 36%(77%) on Arch1 (Arch2). Compared to Chronos, an open source static WCET analyzer, the average improvement in estimates obtained by refinement is 5%(125%) on Arch1 (Arch2). On limiting variance of CPI within a sub-phase to {50%, 10%, 5% and 1%} of its original value, average accuracy of WCET estimate improves further to {9%, 11%, 12% and 13%} respectively, on Arch1. On Arch2, average accuracy of WCET improves to 159% when CPI variance is limited to 50% of its original value and improvement is marginal beyond that point.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use the recently measured accurate BaBaR data on the modulus of the pion electromagnetic form factor,Fπ(t), up to an energy of 3 GeV, the I=1P-wave phase of the π π scattering ampli-tude up to the ω−π threshold, the pion charge radius known from Chiral Perturbation Theory,and the recently measured JLAB value of Fπ in the spacelike region at t=−2.45GeV2 as inputs in a formalism that leads to bounds on Fπ in the intermediate spacelike region. We compare our constraints with experimental data and with perturbative QCD along with the results of several theoretical models for the non-perturbative contribution s proposed in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider Ricci flow invariant cones C in the space of curvature operators lying between the cones ``nonnegative Ricci curvature'' and ``nonnegative curvature operator''. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to the Ricci flow has its curvature operator which satisfies R + epsilon I is an element of C at the initial time, then it satisfies R + epsilon I is an element of C on some time interval depending only on the scalar curvature control. This allows us to link Gromov-Hausdorff convergence and Ricci flow convergence when the limit is smooth and R + I is an element of C along the sequence of initial conditions. Another application is a stability result for manifolds whose curvature operator is almost in C. Finally, we study the case where C is contained in the cone of operators whose sectional curvature is nonnegative. This allows us to weaken the assumptions of the previously mentioned applications. In particular, we construct a Ricci flow for a class of (not too) singular Alexandrov spaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we search for the regions of the phenomenological minimal supersymmetric standard model (pMSSM) parameter space where one can expect to have moderate Higgs mixing angle (alpha) with relatively light (up to 600 GeV) additional Higgses after satisfying the current LHC data. We perform a global fit analysis using most updated data (till December 2014) from the LHC and Tevatron experiments. The constraints coming from the precision measurements of the rare b-decays B-s -> mu(+)mu(-) and b -> s gamma are also considered. We find that low M-A(less than or similar to 350) and high tan beta(greater than or similar to 25) regions are disfavored by the combined effect of the global analysis and flavor data. However, regions with Higgs mixing angle alpha similar to 0.1-0.8 are still allowed by the current data. We then study the existing direct search bounds on the heavy scalar/pseudoscalar (H/A) and charged Higgs boson (H-+/-) masses and branchings at the LHC. It has been found that regions with low to moderate values of tan beta with light additional Higgses (mass <= 600 GeV) are unconstrained by the data, while the regions with tan beta > 20 are excluded considering the direct search bounds by the LHC-8 data. The possibility to probe the region with tan beta <= 20 at the high luminosity run of LHC are also discussed, giving special attention to the H -> hh, H/A -> t (t) over bar and H/A -> tau(+)tau(-) decay modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Taylor coefficients c and d of the EM form factor of the pion are constrained using analyticity, knowledge of the phase of the form factor in the time-like region, 4m(pi)(2) <= t <= t(in) and its value at one space-like point, using as input the (g - 2) of the muon. This is achieved using the technique of Lagrange multipliers, which gives a transparent expression for the corresponding bounds. We present a detailed study of the sensitivity of the bounds to the choice of time-like phase and errors present in the space-like data, taken from recent experiments. We find that our results constrain c stringently. We compare our results with those in the literature and find agreement with the chiral perturbation-theory results for c. We obtain d similar to O(10) GeV-6 when c is set to the chiral perturbation-theory values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let G = (V, E) be a finite, simple and undirected graph. For S subset of V, let delta(S, G) = {(u, v) is an element of E : u is an element of S and v is an element of V - S} be the edge boundary of S. Given an integer i, 1 <= i <= vertical bar V vertical bar, let the edge isoperimetric value of G at i be defined as b(e)(i, G) = min(S subset of V:vertical bar S vertical bar=i)vertical bar delta(S, G)vertical bar. The edge isoperimetric peak of G is defined as b(e)(G) = max(1 <= j <=vertical bar V vertical bar)b(e)(j, G). Let b(v)(G) denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi: 10.1016/j.disc.2007.05.014)]. In this paper we provide bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees. The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show that for a complete binary tree of depth d (denoted as T-d(2)), c(1)d <= b(e) (T-d(2)) <= d and c(2)d <= b(v)(T-d(2)) <= d where c(1), c(2) are constants. For a complete t-ary tree of depth d (denoted as T-d(t)) and d >= c log t where c is a constant, we show that c(1)root td <= b(e)(T-d(t)) <= td and c(2)d/root t <= b(v) (T-d(t)) <= d where c(1), c(2) are constants. At the heart of our proof we have the following theorem which works for an arbitrary rooted tree and not just for a complete t-ary tree. Let T = (V, E, r) be a finite, connected and rooted tree - the root being the vertex r. Define a weight function w : V -> N where the weight w(u) of a vertex u is the number of its successors (including itself) and let the weight index eta(T) be defined as the number of distinct weights in the tree, i.e eta(T) vertical bar{w(u) : u is an element of V}vertical bar. For a positive integer k, let l(k) = vertical bar{i is an element of N : 1 <= i <= vertical bar V vertical bar, b(e)(i, G) <= k}vertical bar. We show that l(k) <= 2(2 eta+k k)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A k-dimensional box is the cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G,denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R-1 x R-2 x ... x R-k where each Ri is a closed interval on the real line of the form [a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G) <= t + inverted right perpendicularlog(n - t)inverted left perpendicular - 1 and box(G) <= left perpendiculart/2right perpendicular + 1, where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds. F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, box(G) <= left perpendicularn/2right perpendicular and cub(G) <= inverted right perpendicular2n/3inverted left perpendicular, where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then box(G) <= inverted right perpendicularn/4inverted left perpendicular and this bound is tight. We also show that if G is a bipartite graph then cub(G) <= n/2 + inverted right perpendicularlog n inverted left perpendicular - 1. We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to n/4. Interestingly, if boxicity is very close to n/2, then chromatic number also has to be very high. In particular, we show that if box(G) = n/2 - s, s >= 0, then chi (G) >= n/2s+2, where chi (G) is the chromatic number of G.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RuvA, along with RuvB, is involved in branch migration of heteroduplex DNA in homologous recombination. The structures of three new crystal forms of RuvA from Mycobacterium tuberculosis (MtRuvA) have been determined. The RuvB-binding domain is cleaved off in one of them. Detailed models of the complexes of octameric RuvA from different species with the Holliday junction have also been constructed. A thorough examination of the structures presented here and those reported earlier brings to light the hitherto unappreciated role of the RuvB-binding domain in determining inter-domain orientation and oligomerization. These structures also permit an exploration of the interspecies variability of structural features such as oligomerization and the conformation of the loop that carries the acidic pin, in terms of amino acid substitutions. These models emphasize the additional role of the RuvB-binding domain in Holliday junction binding. This role along with its role in oligomerization could have important biological implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review here classical Bogomolnyi bounds, and their generalisation to supersymmetric quantum field theories by Witten and Olive. We also summarise some recent work by several people on whether such bounds are saturated in the quantised theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a nonlinear control has been designed using the dynamic inversion approach for automatic landing of unmanned aerial vehicles (UAVs), along with associated path planning. This is a difficult problem because of light weight of UAVs and strong coupling between longitudinal and lateral modes. The landing maneuver of the UAV is divided into approach, glideslope and flare. In the approach UAV aligns with the centerline of the runway by heading angle correction. In glideslope and flare the UAV follows straight line and exponential curves respectively in the pitch plane with no lateral deviations. The glideslope and flare path are scheduled as a function of approach distance from runway. The trajectory parameters are calculated such that the sink rate at touchdown remains within specified bounds. It is also ensured that the transition from the glideslope to flare path is smooth by ensuring C-1 continuity at the transition. In the outer loop, the roll rate command is generated by assuring a coordinated turn in the alignment segment and by assuring zero bank angle in the glideslope and flare segments. The pitch rate command is generated from the error in altitude to control the deviations from the landing trajectory. The yaw rate command is generated from the required heading correction. In the inner loop, the aileron, elevator and rudder deflections are computed together to track the required body rate commands. Moreover, it is also ensured that the forward velocity of the UAV at the touch down remains close to a desired value by manipulating the thrust of the vehicle. A nonlinear six-DOF model, which has been developed from extensive wind-tunnel testing, is used both for control design as well as to validate it.