39 resultados para Biology, Economic
Resumo:
The forestry sector provides a number of climate change mitigation options. Apart from this ecological benefit, it has significant social and economic relevance. Implementation of forestry options requires large investments and sustained long-term planning. Thus there is a need for a detailed analysis of forestry options to understand their implications on stock and flow of carbon, required investments, value of forest wealth, contribution to GNP and livelihood, demand management, employment and foreign trade. There is a need to evaluate the additional spending on forestry by analysing the environmental (particularly carbon abatement), social and economic benefits. The biomass needs for India are expected to increase by two to three times by 2020. Depending upon the forest types, ownership patterns and land use patterns, feasible forestry options are identified. It is found among many supply options to be feasible to meet the 'demand based needs' with a mix of management options, species choices and organisational set up. A comparative static framework is used to analyze the macro-economic impacts. Forestry accounts for 1.84% of GNP in India. It is characterized by significant forward industrial linkages and least backward linkage. Forestry generates about 36 million person years of employment annually. India imports Rs. 15 billion worth of forest based materials annually. Implementation of the demand based forestry options can lead to a number of ecological, economic and institutional changes. The notable ones are: enhancement of C stock from 9578 to 17 094 Mt and a net annual C-sequestration from 73 to 149 Mt after accounting for all emissions; a trebling of the output of forestry sector from Rs. 49 billion to Rs. 146 billion annually; an increase in GDP contribution of forestry from Rs. 32 billion to Rs. 105 billion over a period of 35 years; an increase in annual employment level by 23 million person years, emergence of forestry as a net contributor of foreign exchange through trading of forestry products; and an increase in economic value of forest capital stock by Rs. 7260 billion with a cost benefit analysis showing forestry as a profitable option. Implementation of forestry options calls for an understanding of current forest policies and barriers which are analyzed and a number of policy options are suggested. (C) 1997 Elsevier Science B.V.
Resumo:
Previous studies have shown predominant association of G10P11 type bovine rotavirus-derived reassortant strains with asymptomatic infections in newborn children in India. To understand the epidemiological and genetic basis for the origin of these strains in humans, the relative frequencies of different serotypes among bovine rotaviruses (BRVs) isolated from southern, western and central regions of the country were determined by subgroup and serotype analysis as well as nucleotide (nt) sequence analysis of the genes encoding the outer capsid proteins VP4 and VP7. Since the human G10P11 asymptomatic neonatal strain I321 possessed NSP1 from a human rotavirus, to determine its genetic origin in the bovine strains, comparative analysis of partial gene sequences from representative G10P11 strains was also carried out. The following observations were of great epidemiological significance, (i) G10P11 strains predominated in all the three regions with frequencies ranging between 55.6% and 85.2%. In contrast to the high prevalence of G6 strains in other countries, only one G6 strain was detected in this study and G8 strains represented 5.8% of the isolates, (ii) among the G10 strains, in serotyping ELISA, four patterns of reactivity were observed that appeared to correlate with the differences in electropherotypic patterns and amino acid (aa) sequence of the VP7, (iii) surprisingly, strains belonging to serotype G3 were detected more frequently (10.7%) than those of serotypes G6 and G8 combined, while strains representing the new serotype (G15) were observed in a single farm in Bangalore, and (iv) about 3.9% of the isolates were nontypeable as they exhibited high cross-reactivity to the serotyping MAbs used in the study. Comparative analysis of the VP7 gene sequence from the prototype G3 MAb-reactive bovine strain J63 revealed greatest sequence relatedness (87.6% nt and 96.0% aa) with that of serotype G3 rhesus-monkey strain RRV. It also exhibited high sequence homology with the VP7 from several animal and animal rotavirus-related human G3 strains (Simian SA11; equine ERV316 and FI-14. canine CU-1 and K9; porcine 4F; Feline Cat2 and human HCR3, YO and AU1). Partial nucleotide sequence analysis of the NSP1 gene of J63 showed greatest nt sequence homology (95.9%) to the NSP1 gene allele of the Indian G8 strain, isolated from a diarrheic child, which is likely to have been transmitted directly from cattle and 92.6% homology to that of the bovine G8 strain A5-10 suggesting the likely origin of J63 by gene reassortment between a bovine G8 strain and a G3 animal strain. Prevalence of G10P11 strains in cattle and G10P11 or P11 type reassortant strains in asymptomatic neonates as well as detection of G8P[1] strains in diarrheic children support our hypothesis for bidirectional transmission of rotaviruses between humans and cattle and origin of novel strains catalyzed by the age-old traditions and socio-economic conditions in India.
Resumo:
Among the many different objectives of large scale structural genomics projects are expanding the protein fold space, enhancing understanding of a model or disease-related organism, and providing foundations for structure-based drug discovery. Systematic analysis of protein structures of Mycobacterium tuberculosis has been ongoing towards meeting some of these objectives. Indian participation in these efforts has been enthusiastic and substantial. The proteins of M. tuberculosis chosen for structural analysis by the Indian groups span almost all the functional categories. The structures determined by the Indian groups have led to significant improvement in the biochemical knowledge on these proteins and consequently have started providing useful insights into the biology of M. tuberculosis. Moreover, these structures form starting points for inhibitor design studies, early results of which are encouraging. The progress made by Indian structural biologists in determining structures of M. tuberculosis proteins is highlighted in this review. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Systems biology seeks to study biological systems as a whole, by adopting an integrated approach to study and understand the function of biological systems, particularly, the response of such systems to various perturbations. In this article, we focus on the Indian efforts towards systems-level studies of Mycobacterium tuberculosis and its interaction with the host. Availability of a variety of genome-scale experimental data, providing first level `omics' descriptions of the pathogen, render it feasible to study it at a systems level. Various aspects of the pathogen, from metabolic pathways to protein-protein interaction networks have been modelled and simulated, while host-pathogen interactions have been studied experimentally using siRNA-based techniques. These studies have been useful in obtaining a global perspective of the pathogen and its interactions with the host in many ways. For example, significant insights have been gained about different aspects such as proteins essential for bacterial survival, proteins that are highly influential in the network, pathways that are highly connected, host factors responsible for maintaining the TB infection and key factors involved in autophagy and pathogenesis. A rational pipeline developed for drug target identification incorporating analyses of the interactome, reactome, genome, pocketome and the transcriptome is discussed. Finally, exploring host factors as drug targets and insights about the emergence of drug resistance are also discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.
Resumo:
Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.
Resumo:
Regulation of the transcription machinery is one of the many ways to achieve control of gene expression. This has been done either at the transcription initiation stage or at the elongation stage. Different methodologies are known to inhibit transcription initiation via targeting of double-stranded (ds) DNA by: (i) synthetic oligonucleotides, (ii) ds-DNA-specific, sequenceselective minor-groove binders (distamycin A), intercalators (daunomycin) combilexins and (iii) small molecule (peptide or intercalator)-oligonucleotide conjugates. In some cases, instead of ds-DNA, higher order G-quadruplex structures are formed at the start site of transcription. In this regard G-quadruplex DNA-specific small molecules play a significant role towards inhibition of the transcription machinery. Different types of designer DNA-binding agents act as powerful sequence-specific gene modulators, by exerting their effect from transcription regulation to gene modification. But most of these chemotherapeutic agents have serious side effects. Accordingly, there is always a challenge to design such DNA-binding molecules that should not only achieve maximum specific DNA-binding affinity, and cellular and nuclear transport activity, but also would not interfere with the functions of normal cells.
Resumo:
Vibrational microspectroscopic (Raman and infrared (IR)) techniques are rapidly emerging as effective tools to probe the basic processes of life. This review mainly focuses on the applications of Raman and IR microspectroscopy to biology and biomedicine, ranging from studies on cellular components in single cells to advancement in techniques for in vitro to in vivo applications. These techniques have proved to be instrumental in studying the biological specimen with minimum perturbation, i.e. without the use of dyes and contrast-inducing agents. These techniques probe the vibrational modes of the molecules and provide spectra that are specific to the molecular properties and chemical nature of the species.
Resumo:
Current scientific research is characterized by increasing specialization, accumulating knowledge at a high speed due to parallel advances in a multitude of sub-disciplines. Recent estimates suggest that human knowledge doubles every two to three years – and with the advances in information and communication technologies, this wide body of scientific knowledge is available to anyone, anywhere, anytime. This may also be referred to as ambient intelligence – an environment characterized by plentiful and available knowledge. The bottleneck in utilizing this knowledge for specific applications is not accessing but assimilating the information and transforming it to suit the needs for a specific application. The increasingly specialized areas of scientific research often have the common goal of converting data into insight allowing the identification of solutions to scientific problems. Due to this common goal, there are strong parallels between different areas of applications that can be exploited and used to cross-fertilize different disciplines. For example, the same fundamental statistical methods are used extensively in speech and language processing, in materials science applications, in visual processing and in biomedicine. Each sub-discipline has found its own specialized methodologies making these statistical methods successful to the given application. The unification of specialized areas is possible because many different problems can share strong analogies, making the theories developed for one problem applicable to other areas of research. It is the goal of this paper to demonstrate the utility of merging two disparate areas of applications to advance scientific research. The merging process requires cross-disciplinary collaboration to allow maximal exploitation of advances in one sub-discipline for that of another. We will demonstrate this general concept with the specific example of merging language technologies and computational biology.