155 resultados para Biochemical and molecularcharacterization
Resumo:
To study the structure activity relationship (SAR) on the cytotoxic activity and probe the structural requirement for the potent antitumor activity, a series of novel diazaspiro bicyclo hydantoin derivatives were designed and synthesized. Their structures were confirmed by H-1 NMR, LCMS and IR analyses. The antiproliferative effect of these compounds were determined against human leukemia, K562 (chronic myelogenous leukemia) and CEM (T-cell leukemia) cells using trypan blue and MTT assay, and the SAR associated with the position of N-terminal substituents in diazaspiro bicyclo hydantoin have also been discussed. It has been observed that these compounds displayed strong, moderate and weak cytotoxic activities. Interestingly, compounds having electron withdrawing groups at third and fourth position of the phenyl ring displayed selectively cytotoxic activities to both the cell lines tested with IC50 value lower than 50 mu M. In addition, the cytotoxic activities of the compounds 7(a-o) bearing the substituents at N-3 position of diazaspiro bicyclo hydantoin increases in the order alkene > ester > ether and plays an important role in determining their antitumor activities. The position and number of substituents in benzyl group attached to N-8 of diazaspiro bicyclo hydantoin nucleus interacted selectively with specific targets leading to the difference of biochemical and pharmacological effects.
Resumo:
A rapid and sensitive method is described to quantitatively compare tRNA pools for individual aminoacids in a single experiment. The procedure comprises of: (i) charging of total tRNA with a mixture of radiolabeled aminoacids, (ii) deacylation of the esterified tRNA with a volatile base and the recovery of the labeled aminoacid, (iii) derivatisation of the aminoacid with phenylisothiocyanate after mixing with excess of nonradioactive aminoacids, (iv) baseline separation of the phenylthiocarbamyl aminoacids by reverse phase high performance liquid chromatography monitored by A254nm and (v) quantitation of the radioactivity in individual aminoacid peaks. The radioactivity in the aminoacid peak corresponds to the quantity of the aminoacylated tRNA. The method has been successfully applied to quantitate the individual tRNA pools in the developing silk glands of Bombyx mori, a functionally adapted tissue which undergoes considerable variations in tRNA content. PSG, posterior silk gland; PITC, phenylisothiocyanate; DMAA, N,N-dimethyl-N-allylamine; APH, algal protein hydrolysate; ptc-, phenylthiocarbamyl; HPLC, high performance liquid chromatography.
Resumo:
Microsomal b-type hemoprotein designated, cytochrome b555 of C-Roseus seedlings was solubilized using detergents and purified by a combination of ion exchange chromatography and gel filtration to a specific content of 18.5 nmol per mg of protein. The purified cytochrome b555 was homogeneous and estimated to have an apparent molecular weight of 16500 on SDS-PAGE. The absorption spectrum of the reduced form has major peaks at 424, 525 and 555 nm. The α-band of the reduced form is asymmetric with a pronounced shoulder at 559 nm. The spectrum of the pyridine ferrohemochrome shows absorption peaks at 557, 524 and 418 nm indicating that the cytochrome has protoheme prosthetic group. The purified cytochrome is autoxidizable and does not combine with carbon monoxide, azide or cyanide. It is reducible by NADH in the presence of NADH-cytochrome b555 reductase partially purified from C-Roseus microsomes.
Resumo:
Alamethicin, its derivatives and some synthetic fragments have been shown to be uncouplers of oxidative phosphorylation in rat liver mitochondria. A minimum peptide chain length of 13 residues is necessary for this activity. Peptide esters are more efficient uncouplers than the corresponding peptide acids. Esterification of the Glu(18) γ-COOH group in alamethicin does not diminish uncoupling activity. The structural requirements for uncoupling activity parallel those determined for ionophoretic action in small, unilamellar liposomes. Aib, α-aminoisobutyric acid; Z, benzyloxycarbonyl; OMe, methyl ester; OBz, benzyl ester; Ac, acetyl; CTC, chlortetracycline.
Resumo:
Two types of left-handed zig-zag (LZ) helices were obtained following stereochemical guideline. They are referred to as LZ1 and LZ2 helices. LZ1 helices have conformations similar to those found in the single crystals of d(C-G)3 and d(C-G)25,6. Z-character is more prominent in LZ2 than in LZ1 helix. The conformations of a stable link between RU and LZ helical fragments are given. The link involves inverted stacking arrangement of the bases: a characteristic feature of all RL models proposed by us
Resumo:
Highly purified fluorescent labelled anti-bicuculline antibodies were used to mark bicuculline binding sites in cerebral cortex of monkey brain. Specific binding of bicuculline could be demonstrated in the synaptosomal fraction, when bicuculline was added both Image and Image . Addition of γ-aminobutyric acid (GABA) to the bicucullinised membrane led to a decrease in fluorescence indicating same receptor loci and establishing GABA-bicuculline antagonism at a molecular level.
Resumo:
"Strong" excitants of central neurones such as β N-oxalyl L α,β-diaminopropionic acid (ODAP), N-methyl-D-aspartic acid (NMDA) and kainic acid (KA) were found to inhibit the high affinity uptake of glutamate and aspartate in synaptosomes isolated from young rat brain. The potency of these "strong" excitants as convulsants appear to parallel their ability to inhibit glutamate uptake by synaptosomes. The data suggest the possibility that the convulsive effect of these "strong" excitants could be mediated by glutamate/aspartate.
Resumo:
2-Phenethyl alcohol (2-PEA) and 2-phenyllactic acid (2-PLA) were isolated from the culture filtrates of Candida species grown in media containing peptone or phenylalanine as nitrogen source. These compounds were characterized by comparing their UV, IR, and NMR spectral properties with authentic samples. Candida species differed markedly in their production of 2-PEA and 2-PLA. Experiments using [14C]-phenylalanine indicated that both 2-PEA and 2-PLA are synthesised from L-phenylalanine. A pathway for the biosynthesis of 2-PEA from L-phenylalanine has been proposed.
Resumo:
The molecular structure of N-benzyloxycarbonyl-α-aminoisobutyryl-prolyl-α-aminoisobutyryl-alanyl methyl ester (Z-Aib-Pro-Aib-Ala-OMe), the amino terminal tetrapeptide of alamethicin is reported. The molecule contains two consecutive β-turns with Aib-Pro and Pro-Aib at the corners, forming an incipient 310 helix. This constitutes the first example of an X2-Pro3 β-turn in the crystal structure of a small peptide.
Resumo:
Alcaligenes eutrophus utilizing nerolidol, a sesquiterpene alcohol,as the sole source of carbon contains an inducible NAD(P)+-linked secondary alcohol dehydrogenase (SADH). The enzyme was purified to homogeneity by a combination of salt precipitation, ion exchange and affinity matri chromatographies. The apparent molecular mass of the enzyme was estimated to be 139 KDa with four identical subunits of 38.5 KDa. The enzyme carried out both oxidation and reduction reactions. At pH 5.5, enzyme catalyzed the stereospecific reduction of prochiral ketones to secondary alcohols. The pH optimum for the oxidation reaction was 9.5. NADP+ and NADPH were respectively preferred over NAD+ and NADH for oxidation and reduction reactions. Some of the properties of this enzyme were found to be significantly different from those thus far described.
Resumo:
Background: Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. Methodology/Principal Findings: We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. Conclusions/Significance: In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway.
Resumo:
We have used circular dichroism as a probe to characterize the solution conformational changes in RecA protein upon binding to DNA. This approach revealed that RecA protein acquires significant amounts of alpha-helix upon interaction with DNA. These observations, consistent with the data from crystal structure (Story, R. M., Weber, I., and Steitz, T. (1992) Nature 355, 318-325), support the notion that some basic domains including the DNA binding motifs of RecA protein are unstructured and might contribute to the formation of alpha-helix. A comparison of nucleoprotein filaments comprised of RecA protein and a variety of DNA substrates revealed important structural heterogeneity. The most significant difference was observed with poly(dG). poly(dC) and related polymers, rich in GC sequences, which induced minimal amounts of alpha-helix in RecA protein. The magnitude of induction of alpha-helix in RecA protein, which occurred concomitant with the production of ternary complexes, was 2-fold higher with homologous than heterologous duplex DNA. Most importantly, the stimulation of ATP hydrolysis by high salt coincided with that of the induction of alpha-helix in RecA protein. These conformational differences provide a basis for thinking about the biochemical and structural transitions that RecA protein experiences during the formal steps of presynapsis, recognition, and alignment of homologous sequences.
Resumo:
Mycobacterial genomes are endowed with many eukaryote-like nucleotide cyclase genes encoding proteins that can synthesize 3',5'-cyclic AMP (cAMP). However, the roles of cAMP and the need for such redundancy in terms of adenylyl cyclase genes remain unknown. We measured cAMP levels in Mycobacterium smegmatis during growth and under various stress conditions and report the first biochemical and functional characterization of the MSMEG_3780 adenylyl cyclase, whose orthologs in Mycobacterium tuberculosis (Rv1647) and Mycobacterium leprae (ML1399) have been recently characterized in vitro. MSMEG_3780 was important for producing cAMP levels in the logarithmic phase of growth, since the {Delta}MSMEG_3780 strain showed lower intracellular cAMP levels at this stage of growth. cAMP levels decreased in wild-type M. smegmatis under conditions of acid stress but not in the {Delta}MSMEG_3780 strain. This was correlated with a reduction in MSMEG_3780 promoter activity, indicating that the effect of the reduction in cAMP levels on acid stress was caused by a decrease in the transcription of MSMEG_3780. Complementation of the {Delta}MSMEG_3780 strain with the genomic integration of MSMEG_3780 or the Rv1647 gene could restore cAMP levels during logarithmic growth. The Rv1647 promoter was also acid sensitive, emphasizing the biochemical and functional similarities in these two adenylyl cyclases. This study therefore represents the first detailed biochemical and functional analysis of an adenylyl cyclase that is important for maintaining cAMP levels in mycobacteria and underscores the subtle roles that these genes may play in the physiology of the organism.
Resumo:
Rpb4, the fourth largest subunit of the eukaryotic RNA polymerase II (RNAPII), is required for growth at extreme temperatures and for an appropriate response to nutrient starvation in yeast. Sequence homologs of Rpb4 are found in most sequenced genomes from yeast to humans. To elucidate the role of this subunit in nutrient starvation, we chose Dictyostelium discoideum, a soil amoeba, which responds to nutrient deprivation by undergoing a complex developmental program. Here we report the identification of homolog of Saccharomyces cerevisiae RPB4 in D. discoideum. Localization and complementation studies suggest that Rpb4 is functionally conserved. DdRPB4 transcript and protein levels are developmentally regulated. Although DdRPB4 could not be deleted, overexpression revealed that the Rpb4 protein is essential for cell survival and is regulated stringently at the post-transcriptional level in D. discoideum. Thus maintaining a critical level of Rpb4 is important for this organism.
Resumo:
Understanding the molecular mechanisms of immunological memory assumes importance in vaccine design. We had earlier hypothesized a mechanism for the maintenance of immunological memory through the operation of a network of idiotypic and anti-idiotypic antibodies (Ab2). Peptides derived from an internal image carrying anti-idiotypic antibody are hypothesized to facilitate the perpetuation of antigen specific T cell memory through similarity in peptide-MHC binding as that of the antigenic peptide. In the present work, the existence of such peptidomimics of the antigen in the Ab2 variable region and their similarity of MHC-I binding was examined by bioinformatics approaches. The analysis employing three known viral antigens and one tumor-associated antigen shows that peptidomimics from Ab2 variable regions have structurally similar MHC-I binding patterns as compared to antigenic peptides, indicating a structural basis for memory perpetuation. (C)) 2007 Elsevier Inc. All rights reserved.