162 resultados para Bingham fluid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galerkin representations and integral representations are obtained for the linearized system of coupled differential equations governing steady incompressible flow of a micropolar fluid. The special case of 2-dimensional Stokes flows is then examined and further representation formulae as well as asymptotic expressions, are generated for both the microrotation and velocity vectors. With the aid of these formulae, the Stokes Paradox for micropolar fluids is established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we have discussed the motion of a viscous fluid with suspended particles through a curved tube of small curvature ratio. The system is treated as two separate interacting continua. Solutions for axial and secondary velocities are obtained in the form of asymptotic expansions in powers of Dean Number. The streamline pattern for the particulate phase reveals many interesting features. The influence of the particulate continium on the fluid is described by the parameter τ which depends on the density ratio of the two continua. The concentration distribution of the particles in a given cross section is determined. It is noticed that the particles move closer to the wall for certain values of the concentration and the density ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydromagnetic spinup or spindown of an incompressible, rotating, electrically conducting fluid over an infinite insulated disk with an applied magnetic field is studied when the impulsive motion is imparted either to the fluid or to the disk. The nonlinear partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. It is found that the spinup (or spindown) time due to impulsive motion of the disk is much shorter than the spinup (or spindown) time due to the impulsive motion of the distant fluid. The spinup (or spindown) time for the hydromagnetic case is comparatively smaller than the corresponding nonmagnetic case. Spindown is not merely a mirror reflection of spinup. Physics of Fluids is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monsoonal regions of the world are characterized by a seasonal reversal in the direction of winds associated with the excursion of the equatorial trough (or the ITCZ) in response to the variation in the latitude of maximum insolation. This monsoonal circulation is a planetary scale phenomenon. However, the associated precipitation is critically dependent on the organization of the cumulus clouds (typically a few kilometers in horizontal extent) over the scale of synoptic vortices (typically a few hundred kilometers in horizontal extent). Thus modelling of the seasonal transitions and intraseasonal fluctuations requires an understanding of the fluid mechanics of these three scales of organizations and their interactions. The present paper is an attempt to outline the current state of understanding of these phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible role of reaj fluid effects in two aspects of flow cavitation namely inception and separation is discussed. This is primarily qualitative in the case of inception whereas some quantitative results are presented in the case of separation. Existing evidence clearly indicates that in particular viscous effects can play a significant role in determining the conditions for cavitation inception and in determining the location of cavitation separation from smooth bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A formulation in terms of a Fredholm integral equation of the first kind is given for the axisymmetric problem of a disk oscillating harmonically in a viscous fluid whose surface is contaminated with a surfactant film. The equation of the first kind is converted to a pair of coupled integral equations of the second kind, which are solved numerically. The resistive torque on the disk is evaluated and surface velocity profiles are computed for varying values of the ratio of the coefficient of surface shear viscosity to the coefficient of viscosity of the substrate fluid, and the depth of the disk below the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of breakage of drops in a stirred vessel has been proposed to account for the effect of rheology of the dispersed phase. The deformation of the drop is represented by a Voigt element. A realistic description of the role of interfacial tension is incorporated by treating it as a restoring force which passes through a maximum as the drop deforms and eventually reaching a zero value at the break point. It is considered that the drop will break when the strain of the drop has reached a value equal to its diameter. An expression for maximum stable drop diameter, dmax, is derived from the model and found to be applicable over a wide range of variables, as well as to data already existing in literature. The model could be naturally extended to predict observed values of dmax when the dispersed phase is a power law fluid or a Bingham plastic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion generated by forced oscillations in an incompressible inviscid rotating and/or stratified fluid is examined under linear theory taking the density variation on the inertia terms. The solution consists of numerous internal modes in addition to the mode which oscillates with forcing frequency. Resonance occurs when the forcing frequency is equal to one of the frequencies of the internal modes. Some of these modes grow linearly or exponentially with time rendering the motion unstable and eventually may lead to turbulence. Most of the results discussed here will be missed under Boussinesq approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow of a micropolar fluid for sinusoidally deforming boundaries is discussed in detail. The velocity and microrotation fields and the streamfunction are determined and plotted under the assumption of small deformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion due to an oscillatory point source in a rotating stratified fluid has been studied by Sarma & Naidu (1972) by using threefold Fourier transforms. The solution obtained by them in the hyperbolic case is wrong since they did not make use of any radiation condition, which is always necessary to get the correct solution. Whenever the motion is created by a source, the condition of radiation is that the sources must remain sources, not sinks of energy and no energy may be radiated from infinity into the prescribed singularities of the field. The purpose of the present note is to explain how Lighthill's (1960) radiation condition can be applied in the hyperbolic case to pick the correct solution. Further, the solution thus obtained is reiterated by an alternative procedure using Sommerfeld's (1964) radiation condition.