374 resultados para Binding Lectin


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Titration calorimetry measurements of the binding of phenyl-alpha (alpha PhOGlu), 3-methoxy (3MeOGlu), fluorodeoxy and deoxy derivatives of alpha-D-glucopyranose (Glu) to concanavalin A (conA), pea lectin and lentil lectin were performed at approx. 10 and 25 degrees C in 0.01 M dimethylglutaric acid/NaOH buffer, pH 6.9, containing 0.15 M NaCl and Mn2+ and Ca2+ ions. Apparently the 3-deoxy, 4-deoxy and 6-deoxy as well as the 4-fluorodeoxy and 6-fluorodeoxy derivatives of Glu do not bind to the lectins because no heat release was observed on the addition of aliquots of solutions of these derivatives to the lectin solutions. The binding enthalpies, delta H0b, and entropies, delta S0b, determined from the measurements were compared with the same thermodynamic binding parameters for Glu, D-mannopyranoside and methyl-alpha- D-glucopyranoside (alpha MeOGlu). The binding reactions are enthalpically driven with little change in the heat capacity on binding, and exhibit enthalpy-entropy compensation. Differences between the thermodynamic binding parameters can be rationalized in terms of the interactions apparent in the known crystal structures of the methyl-alpha-D-mannopyranoside-conA [Derewenda, Yariv, Helliwell, Kalb (Gilboa), Dodson, Papiz, Wan and Campbell (1989) EMBO J. 8, 2189-2193] and pea lectin-trimanno-pyranoside [Rini, Hardman, Einspahr, Suddath and Carber (1993) J. Biol. Chem. 268, 10126-10132] complexes. Increases in the entropy change on binding are observed for alpha MeOGlu binding to pea and lentil lectin, for alpha PhOGlu binding to conA and pea lectin, and for 3MeOGlu binding to pea lectin relative to the entropy change for Glu binding, and imply that the phenoxy and methoxy substituents provide additional hydrophobic interactions in the complex. Increases in the binding enthalpy relative to that of Glu are observed for deoxy and fluoro derivatives in the C-1 and C-2 positions and imply that these substituents weaken the interaction with the surrounding water, thereby strengthening the interaction with the binding site.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The complete amino acid sequence of winged bean basic agglutinin (WBA I) was obtained by a combination of manual and gas-phase sequencing methods. Peptide fragments for sequence analyses were obtained by enzymatic cleavages using trypsin and Staphylococcus aureus V8 endoproteinase and by chemical cleavages using iodosobenzoic acid, hydroxylamine, and formic acid. COOH-terminal sequence analysis of WBA I and other peptides was performed using carboxypeptidase Y. The primary structure of WBA I was homologous to those of other legume lectins and more so to Erythrina corallodendron. Interestingly, the sequence shows remarkable identities in the regions involved in the association of the two monomers of E. corallodendron lectin. Other conserved regions are the double metal-binding site and residues contributing to the formation of the hydrophobic cavity and the carbohydrate-binding site. Chemical modification studies both in the presence and absence of N-acetylgalactosamine together with sequence analyses of tryptophan-containing tryptic peptides demonstrate that tryptophan 133 is involved in the binding of carbohydrate ligands by the lectin. The location of tryptophan 133 at the active center of WBA I for the first time subserves to explain a role for one of the most conserved residues in legume lectins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coccinia indica agglutinin (CIA) is a chitooligosaccharide-specific lectin with two binding sites/homodimer of M(r) 32,000. Quenching studies implied tryptophan involvement in binding activity, which was confirmed by chemical modification experiments (A. R. Sanadi and A. Surolia, submitted for publication). Binding of 4-methylumbelliferyl chitooligosaccharides has been carried out to study their binding by CIA. Reversal experiments confirm the validity of the data previously obtained (A. R. Sanadi and A. Surolia, submitted for publication) from intrinsic fluorescence studies. Surprisingly, unlike wheat germ agglutinin, there is no consistent thermodynamic effect of the chromophoric label on binding activities as compared with the native sugars. From the changes in the optical properties of the chromophoric group upon binding to CIA, it has been possible to confirm that the tryptophan located in the binding site is closest to the fourth subsite. Thermodynamic analysis shows that the binding of the labeled tetrasaccharide is very strongly entropically driven, with the terminal, nonreducing sugar residue protruding from the binding pocket. The results of stopped-flow kinetic studies on the binding of the chromophoric trisaccharide by CIA show that the mechanism of binding is a one-step process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Titration calorimetry measurements of the binding of methyl alpha-D-mannopyranoside (Me alpha Man), D-mannopyranoside (Man), methyl alpha-D-glucopyranoside (Me alpha Glu), and D-glucopyranoside (Glu) to concanavalin A (Con A), pea lectin, and lentil lectin were performed at 281 and 292 K in 0.01 M dimethylglutaric acid-NaOH buffer (pH 6.9) containing 0.15 M NaCl and Mn+2 and Ca+2 ions. The site binding enthalpies, delta H, are the same at both temperatures and range from -28.4 +/- 0.9 (Me alpha Man) to -16.6 +/- 0.5 kJ mol-1 (Glu) for Con A, from -26.2 +/- 1.1 (Me alpha Man) to -12.8 +/- 0.4 kJ mol-1 (Me alpha Glu) for pea lectin, and from -16.6 +/- 0.7 (Me alpha Man) to -8.0 +/- 0.2 kJ mol-1 (Me alpha Glu) for lentil lectin. The site binding constants range from 17 +/- 1 x 10(3) M-1 (Me alpha Man to Con A at 281.2 K) to 230 +/- 20 M-1 (Glu to lentil lectin at 292.6 K) and exhibit high specificity for Con A where they are in the Me alpha Man:Man:Me alpha Glu:Glu ratio of 21:4:5:1, while the corresponding ratio is 5:2:1.5:1 for pea lectin and 4:2:2:1 for lentil lectin. The higher specificity for Con A indicates more interactions between the amino acid residues at the binding site and the carbohydrate ligand than for the pea and lentil lectin-carbohydrate complexes. The carbohydrate-lectin binding results exhibit enthalpy-entropy compensation in that delta Hb (kJ mol-1) = -1.67 +/- 0.06 x 10(4) + (1.30 +/- 0.12)T(K) delta Sb (J mol-1K-1). Differential scanning calorimetry measurements on the thermal denaturation of the lectins and their carbohydrate complexes show that the Con A tetramer dissociates into monomers, while the pea and lentil lectin dimers dissociate into two submonomer fragments. At the denaturation temperature, one carbohydrate binds to each monomer of Con A and the pea and lentil lectins. Complexation with the carbohydrate increases the denaturation temperature of the lectin and the magnitude of the increases yield binding constants in agreement with the determinations from titration calorimetry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to identify the forces involved in the binding and to understand the mechanism involved, equilibrium and kinetic studies were performed on the binding of the winged bean acidic lectin to human erythrocytes. The magnitudes of delta S and delta H were positive and negative respectively, an observation differing markedly from the lectin-simple sugar interactions where delta S and delta H are generally negative. Analysis of the sign and magnitudes of these values indicate that ionic and hydrogen bonded interactions prevail over hydrophobic interactions resulting in net -ve delta H (-37.12 kJ.mol-1) and +ve delta S (14.4 J.mole-1 K-1 at 20 degrees C), thereby suggesting that this entropy driven reaction also reflects conformational changes in the lectin and/or the receptor. Presence of two kinds of receptors for WBA II on erythrocytes, as observed by equilibrium studies, is consistent with the biexponential dissociation rate constants (at 20 degrees C K1 = 1.67 x 10(-3) M-1 sec-1 and K2 = 11.1 x 10(-3) M-1 sec-1). These two rate constants differed by an order of magnitude accounting for the difference in the association constants of the two receptors of WBA II. However, the association process remains monoexponential suggesting no observable difference in the association rates of the lectin molecule with both the receptors, under the experimental conditions studied. The thermodynamic parameters calculated from kinetic data correlate well with those observed by equilibrium. A two-step binding mechanism is proposed based on the kinetic parameters for WBA II-receptor interaction

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermodynamics of the binding of D-galactopyranoside (Gal), 2-acetamido-2-deoxygalactopyranoside (GalNAc), methyl-alpha-D-galactopyranoside, and methyl-beta-D-galactopyranoside to the basic agglutinin from winged bean (WBAI) in 0.02 M sodium phosphate and 0.15 M sodium chloride buffer have been investigated from 298.15 to 333.15 K by titration calorimetry and at the denaturation temperature by differential scanning calorimetry (DSC). WBAI is a dimer with two binding sites. The titration calorimetry yielded single-site binding constants ranging from 0.56 +/- 0.14 x 10(3) M-1 for Gal at 323.15 K to 7.2 +/- 0.5 x 10(3) M-1 for GalNAc at 298.15 K and binding enthalpies ranging from -28.0 +/- 2.0 kJ mol-1 for GalNAc at 298.15 K to -14.3 +/- 0.1 kJ mol-1 for methyl-beta-D-galactopyranoside at 322.65 K. The denaturation transition consisted of two overlapping peaks over the pH range 5.6-7.4. Fits of the differential scanning calorimetry data to a two-state transition model showed that the low temperature transition (341.6 +/- 0.4 K at pH 7.4) consisted of two domains unfolding as a single entity while the higher temperature transition (347.8 +/- 0.6 K at pH 7.4) is of the remaining WBAI dimer unfolding into two monomers. Both transitions shift to higher temperatures and higher calorimetric enthalpies with increase in added ligand concentration at pH 7.4. Analysis of the temperature increase as a function of added ligand concentration suggests that one ligand binds to the two domains unfolding at 341.6 +/- 0.6 K and one ligand binds to the domain unfolding at 347.8 +/- 0.6 K.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The carbohydrate binding specificity of the basic lectin from winged bean (Psophocarpus tetragonolobus) was investigated by quantitative precipitin analysis using blood group A, B, H, Le and I substances and by precipitation inhibition with various mono- and oligosaccharides. The lectin precipitated best with A1 substances and moderately with B and A2 substances, but not with H or Le substances. Inhibition assays of lectin-blood group A1 precipitation demonstration that A substance-derived oligosaccharides having the common structure: d-Ga1NAcα(1 → 3)d-Gal-(β1 → Image ) to a d-Glc, were the best inhibitors and about 8 and 4 times more active than d-Ga1NAc and d-Ga1NAcα(1 → 3)d-Ga1, respectively. A difucosyl A-specific oligosaccharide (A-penta), a monofucosyl (A-tetra) and a non-fucosyl containing (A5 II) oligosaccharide, d-Ga1NAcα(1 → 3)d-Ga1β(1 → 3)d-G1cNAc, had almost the same reactivity, suggesting that the fucose linked to the sub-terminal d-Ga1 or to the third sugar, d-GlcNAc, from the non-reducing end made no contribution to the carbohydrate binding. Although a terminal non-reducing d-Ga1NAc or d-Ga1 residue was indispensible for binding, the lectin bound not only to these terminal non-reducing galactopyranosyl residues, but also showed increased binding to oligosaccharides in which it was bonded to a sub-terminal d-Ga1 joined to a d-GlcNAc residue, as in blood group A or B substances. This defines the site, thus far, as complementary to a disaccharide plus the β linkage to the third sugar (d-Glc or d-GlcNAc) from the non-reducing end. The role of the β(1 → 3) or β(1 → 4) linkage of the sub-terminal non-reducing d-Gal to the d-GlcNAc requires further study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

n acidic lectin (WBA II) was isolated to homogeneity from the crude seed extract of the winged bean (Psophocarpus tetragonolobus) by affinity chromatography on lactosylaminoethyl-Bio-Gel. Binding of WBA II to human erythrocytes of type-A, -B and -O blood groups showed the presence of 10(5) receptors/cell, with high association constants (10(6)-10(8) M-1). Competitive binding studies with blood-group-specific lectins reveal that WBA II binds to H- and T-antigenic determinants on human erythrocytes. Affinity-chromatographic studies using A-, B-, H- and T-antigenic determinants coupled to an insoluble matrix confirm the specificity of WBA II towards H- and T-antigenic determinants. Inhibition of the binding of WBA II by various sugars show that N-acetylgalactosamine and T-antigenic disaccharide (Thomsen-Friedenreich antigen, Gal beta 1-3GalNAc) are the most potent mono- and di-saccharide inhibitors respectively. In addition, inhibition of the binding of WBA II to erythrocytes by dog intestine H-fucolipid prove that the lectin binds to H-antigenic determinant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The CCEM method (Contact Criteria and Energy Minimisation) has been developed and applied to study protein-carbohydrate interactions. The method uses available X-ray data even on the native protein at low resolution (above 2.4 Å) to generate realistic models of a variety of proteins with various ligands.The two examples discussed in this paper are arabinose-binding protein (ABP) and pea lectin. The X-ray crystal structure data reported on ABP-β-l-arabinose complex at 2.8, 2.4 and 1.7 Å resolution differ drastically in predicting the nature of the interactions between the protein and ligand. It is shown that, using the data at 2.4 Å resolution, the CCEM method generates complexes which are as good as the higher (1.7 Å) resolution data. The CCEM method predicts some of the important hydrogen bonds between the ligand and the protein which are missing in the interpretation of the X-ray data at 2.4 Å resolution. The theoretically predicted hydrogen bonds are in good agreement with those reported at 1.7 Å resolution. Pea lectin has been solved only in the native form at 3 Å resolution. Application of the CCEM method also enables us to generate complexes of pea lectin with methyl-α-d-glucopyranoside and methyl-2,3-dimethyl-α-d-glucopyranoside which explain well the available experimental data in solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Combining site of WBAI is extended and encompasses all the residues of blood group A-reactive trisaccharide [GalNAcalpha3Galbeta4Glc]. Though both of the fucose residues of A-pentasaccharide [GalNAcalpha(Fucalpha2)3Galbeta(Fucalpha3)4Glc] do not directly interact, with the combining site they thermodynamically favour the interaction of GalNAcalpha3Galbeta4Glc part of the molecule by imposing a sterically favourable orientation of the binding epitope viz. GalNAcalpha3Galbeta4Glc of the saccharide. Binding of sugars is driven by enthalpy and is devoid of heat capacity changes. This together with enthalpy-entropy compensation observed for these processes underscore the importance of water reorganization as being one of the principal determinant of protein-sugar interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The binding affinity of the oligosaccharide moiety of a neutral glycosphingolipid, asialoGM1, towards Ricinus communis agglutinin (RCAI) was determined for the first time by fluorescence resonance energy transfer (RET). The asialoGM1 was incorporated into a phospholipid (DMPC) vesicle doped with dansylated DPPE and then titrated with an increasing amount of the galactose specific RCAI. The efficiency of RET was determined by a saturable increase in the quenching of 'donor' fluorescence, i.e. the 'trp' residue of RCAI, due to the energy transfer from the 'acceptor' dansyl group on the surface of the vesicle. The apparent binding constant was found to be in the range of 10(5)-10(6) M-1 at 27 degrees C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The three crystal structures reported here provide details of the interactions of mannose and the mannosyl-alpha-1,3-mannose component of a pentamannose with banana lectin and evidence for the binding of glucosyl-alpha-1,2-glucose to the lectin. The known structures involving the lectin include a complex with glucosyl-beta-1,3-glucose. Modeling studies on the three disaccharide complexes with the reducing end and the nonreducing end at the primary binding site are also provided here. The results of the Xray and modeling studies show that the disaccharides with an alpha-1,3 linkage prefer to have the nonreducing end at the primary binding site, whereas the reducing end is preferred at the site when the linkage is beta-1,3 in mannose/glucose-specific beta-prism I fold lectins. In the corresponding galactose-specific lectins, however, alpha-1,3-linked disaccharides cannot bind the lectin with the nonreducing end at the primary binding site on account of steric clashes with an aromatic residue that occurs only when the lectin is galactose-specific. Molecular dynamics simulations based on the known structures involving banana lectin enrich the information on lectin-carbohydrate interactions obtained from crystal structures. They demonstrate that conformational selection as well as induced fit operate when carbohydrates bind to banana lectin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crystal structure of a lectin purified from Butea monosperma seeds was determined by Molecular Replacement method. Its primary structure was determined by Tandem Mass Spectroscopy and electron density maps from X-ray diffraction data. Its quaternary structure was tetrameric, formed of two monomers, alpha and beta, beta appearing as truncated alpha. The occurrence of two tetramers in the asymmetric unit of the crystal might be a consequence of asymmetric contacts due to difference in glycosylation and variable loops structures, to form an `octamer-structure'. The crystal structure showed binding pockets for gamma Abu, having a proposed role in plant defense, at the interface of canonical dimer-partners. Hemagglutination studies, enzyme kinetics, isothermal titration calorimetry and molecular dynamics showed that the lectin is specific to N-acetyl D-galactosamine, galactose and lactose in decreasing order, and alpha-amylase inhibitor. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

LysM domains have been recognized in bacteria and eukaryotes as carbohydrate-binding protein modules, but the mechanism of their binding to chitooligosaccharides has been underexplored. Binding of a Mycobacterium smegmatis protein containing a lectin (MSL) and one LysM domain to chitooligosaccharides has been studied using isothermal titration calorimetry and fluorescence titration that demonstrate the presence of two binding sites of nonidentical affinities per dimeric MSL-LysM molecule. The affinity of the molecule for chitooligosaccharides correlates with the length of the carbohydrate chain. Its binding to chitooligosaccharides is characterized by negative cooperativity in the interactions of the two domains. Apparently, the flexibility of the long linker that connects the LysM and MSL domains plays a facilitating role in this recognition. The LysM domain in the MSL-LysM molecule, like other bacterial domains but unlike plant LysM domains, recognizes equally well peptidoglycan fragments as well as chitin polymers. Interestingly, in the case presented here, two LysM domains are enough for binding to peptidoglycan in contrast to the three reportedly required by the LysM domains of Bacillus subtilis and Lactococcus lactis. Also, the affinity of the MSL-LysM molecule for chitooligosaccharides is higher than that of LysM-chitooligosaccharide interactions reported so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding of Ricinus communis (castor-bean) agglutinin 1 to saccharides was studied by equilibrium dialysis and fluorescence polarization by using the fluorescently labelled sugar 4-methylumbelliferyl beta-D-galactopyranoside. No appreciable change in ligand fluorescence of 4-methylumbelliferyl beta-D-galactopyranoside was considerably polarized on its binding to the lectin. The association constants obtained by Scatchard analysis of equilibrium-dialysis and fluorescence-polarization data do not differ much from each other, and at 25 degrees C, Ka = 2.4 (+/- 0.2) X 10(4)M-1. These values agree reasonably well with that reported in the literature for Ricinus agglutinin 1. The number of binding sites obtained by the different experimental procedures is 1.94 +/- 0.1 per molecule of 120 000 daltons and is equal to the reported value of 2. The consistency in the values of Ka and number of binding sites indicate the absence of additional subsites on Ricinus agglutinin 1 for its specific sugars. In addition, the excellent agreement between the binding parameters obtained by equilibrium dialysis and fluorescence polarization indicate the potential of ligand-fluorescence-polarization measurements in the investigation of lectin-sugar interactions.