58 resultados para Bills of exchange.
Effect of Temperature Variation on Sister Chromatid Exchange Frequency in Cultured Human Lymphocytes
Resumo:
The effect of temperature variation on sister chromatid exchange (SCE) frequencies in human lymphocytes was studied. An increase as well as decrease in incubation temperature of cells leads to a higher frequency of sister chromatid exchanges than in cultures grown at 37°C. In addition, it was observed that mitotic: index and cell cycle duration were affected by low temperature.
Resumo:
It is shown that lithium can be oxidatively extracted from Li2MoO3 at room temperature using Br2 in CHCl3. The delithiated oxides, Li2â��xMoO3 (0 < x â�¤ 1.5) retain the parent ordered rocksalt structure. Complete removal of lithium from Li2MoO3 using Br2 in CH3CN results in a poorly crystalline MoO3 that transforms to the stable structure at 280�°C. Li2MoO3 undergoes topotactic ion-exchange in aqueous H2SO4 to yield a new protonated oxide, H2MoO3.
Resumo:
Both LiNbWO6 and LiTaWO6 undergo ion exchange in hot aqueous H2SO4 yielding the hydrates HMWO6 · H2O (M = Nb or Ta). The reaction is accompanied by a structural transformation from the rutile to the ReO3 structure. The cell constants are a = 3.783(3)Å for HNbWO6 · H2O and a = 3.785(5)Å for HTaWO6 · H2O. The ReO3 structure is retained by the dehydration products HMWO6 and MWO5.5 as well. HMWO6 phases yield H1+xMWO6 hydrogen bronzes on exposure to hydrogen in the presence of platinum catalyst.
Resumo:
A new series of layered perovskite oxides, AILaNb2O7 (A = Li, Na, K, Rb, Cs, NH4) constituting n = 2 members of the family A A′n−1BnO3n+1, has been prepared. Their structure consists of double perovskite slabs interleaved by A atoms. Hydrated HLaNb2O7 is formed by topotactic proton exchange of the A atoms in ALaNb2O7 (A = K, Rb, Cs). The hydrate readily loses water to give anhydrous HLaNb2O7 which is isostructural with RbLaNb2O7. HLaNb2O7 exhibits Bronsted acidity forming intercalation compounds with bases such as n-octylamine and pyridine.
Resumo:
It is shown that the intrinsic two-phonon terms occurring in first order in the electron-phonon interaction Hamiltonian can give rise to (i) an essential doubling of the interaction phase space (BCS cutoff) and (ii) an attractive pairing interaction proportional to the phonon occupation numbers. This suggests a possible enhancement of the superconductive transition temperature in the presence of high-frequency acoustic field.
Resumo:
We have observed the exchange spring behavior in the soft (Fe3O4)-hard (BaCa2Fe16O27)-ferrite composite by tailoring the particle size of the individual phases and by suitable thermal treatment of the composite. The magnetization curve for the nanocomposite heated at 800 degrees C shows a single loop hysteresis showing the existence of the exchange spring phenomena in the composite and an enhancement of 13% in (BH)(max) compared to the parent hard ferrite (BaCa2Fe16O27). The Henkel plot provides the proof of the presence of the exchange interaction between the soft and hard grains as well as its dominance over the dipolar interaction in the nanocomposite.
Resumo:
Two new neutral copper-azido polymers [Cu-3(N-3)(6)(tmen)(2)](n)(1)and [Cu-6(N-3)(12)(deen)(2)](n) (2) [tmen = N,N,N, N-tetramethylethylenediamine and deen = N,N-diethylethylenediamine] have been synthesized by using lower molar equivalents of the chelating diamine ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. The single crystal X-ray structure shows that in the basic unit of the 1D complex 1, the three Cu-II ions are linked by double end-on azido bridges with Cu-N-EO-Cu angles on both sides of the magnetic exchange critical angle of 108 degrees. Complex 2 is a 3D framework of a basic u-6 cluster. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in both the complexes. Density functional theory calculations (B3LYP functional) have been performed on the trinuclear unit to provide a qualitative theoretical interpretation of the overall ferromagnetic behavior shown by the complex 1.
Resumo:
To gain insights into inefficient allele exchange in mycobacteria, we compared homologous pairing and strand exchange reactions promoted by RecA protein of Mycobacterium tuberculosis to those of Escherichia coli RecA protein. The extent of single-stranded binding protein (SSB)-stimulated formation of joint molecules by MtRecA was similar to that of EcRecA over a wide range of pH values. In contrast, strand exchange promoted by MtRecA was inhibited around neutral pH due to the formation of DNA networks. At higher pH, MtRecA was able to overcome this constraint and, consequently, displayed optimal strand exchange activity. Order of addition experiments suggested that SSB, when added after MtRecA, was vital for strand exchange. Significantly, with shorter duplex DNA, MtRecA promoted efficient strand exchange without network formation in a pH-independent fashion. Increase in the length of duplex DNA led to incomplete strand exchange with concomitant rise in the formation of intermediates and networks in a pH-dependent manner. Treatment of purified networks with S1 nuclease liberated linear duplex DNA and products, consistent with a model in which the networks are formed by the invasion of hybrid DNA by the displaced linear single-stranded DNA. Titration of strand exchange reactions with ATP or salt distinguished a condition under which the formation of networks was blocked, but strand exchange was not significantly affected. We discuss how these results relate to inefficient allele exchange in mycobacteria.
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The C-m(urea)/C-m(GdmCl) ratio (where C-m is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide crosslinked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74') and (13'-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol-disulfide exchange.
Resumo:
Structural specificity for the direct vesicle−vesicle exchange of phospholipids through stable molecular contacts formed by the antibiotic polymyxin B (PxB) is characterized by kinetic and spectroscopic methods. As shown elsewhere [Cajal, Y., Rogers, J., Berg, O. G., & Jain, M. K. (1996) Biochemistry 35, 299−308], intermembrane molecular contacts between anionic vesicles are formed by a small number of PxB molecules, which suggests that a stoichiometric complex may be responsible for the exchange of phospholipids. Larger clusters containing several vesicles are formed where each vesicle can make multiple contacts if sterically allowed. In this paper we show that the overall process can be dissected into three functional steps: binding of PxB to vesicles, formation of stable vesicle−vesicle contacts, and exchange of phospholipids. Polycationic PxB binds to anionic vesicles. Formation of molecular contacts and exchange of monoanionic phospholipids through PxB contacts does not depend on the chain length of the phospholipid. Only monoanionic phospholipids (with methanol, serine, glycol, butanol, or phosphatidylglycerol as the second phosphodiester substituent in the head group) exchange through these contacts, whereas dianionic phosphatidic acid does not. Selectivity for the exchange was also determined with covesicles of phosphatidylmethanol and other phospholipids. PxB does not bind to vesicles of zwitterionic phosphatidylcholine, and its exchange in covesicles is not mediated by PxB. Vesicles of dianionic phospholipids, like phosphatidic acid, bind PxB; however, this phospholipid does not exchange. The structural features of the contacts are characterized by the spectroscopic and chemical properties of PxB at the interface. PxB in intermembrane contacts is readily accessible from the aqueous phase to quenchers and reagents that modify amino groups. Results show that PxB at the interface can exist in two forms depending on the lipid/PxB ratio. Additional studies show that stable PxB-mediated vesicle−vesicle contacts may be structurally and functionally distinct from “stalks”, the putative transient intermediate for membrane fusion. The phenomenon of selective exchange of phospholipids through peptide-mediated contacts could serve as a prototype for intermembrane targeting and sorting of phospholipids during their biosynthesis and trafficking in different compartments of a cell. The protocols and results described here also extend the syllogistic foundations of interfacial equilibria and catalysis.
Resumo:
New protonated layered oxides, HMWO6·1.5H2O (M=Nb or Ta), have been synthesized by topotactic exchange of lithium in trirutile LiMWO6 with protons by treatment with dilute HNO3. The tetragonal cell constants are a=4.71 (2) and c=25.70 (8)Å for HNbWO6·1.5H2O and a=4.70 (2) and c=25.75 (9) Å for HTaWO6·1.5H2O. Partially hydrated compounds, HMWO6·0.5H2O and anhydrous compounds, HMWO6 retain the layered structure. The structure of these oxides consists of MWO6 sheets built up of M/W-oxygen octahedra with rutile type corner- and edge-sharing. Interlayer protons in HMWO6 are exchanged with Li+, Na+, K+ and Tl+. HMWO6 exhibit Brønsted acidity intercalating n-alkylamines and pyridine.
Resumo:
A novel chelate exchange reaction, leading to the formation of a series of N-alkyl substituent dependent mixed ligand isomeric complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') (Figure 1) are discussed. Here, AB and AC denote two different N-bonded isonitroso-β-keto-imino ligand moieties, while AB' and AC' are the corresponding O-bonded ligand moieties and R is an N-alkyl substituent. The isomeric complexes are suggested to be monomeric, neutral and diamagnetic with an asymmetric square planar geometry. The bonding isomerism of the isonitroso group in these complexes is discussed on the basis of the infrared and proton magnetic resonance spectral studies. A probable mechanism for the preparative route is also proposed.