21 resultados para Bilateral balanced occlusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose optimal bilateral filtering techniques for Gaussian noise suppression in images. To achieve maximum denoising performance via optimal filter parameter selection, we adopt Stein's unbiased risk estimate (SURE)-an unbiased estimate of the mean-squared error (MSE). Unlike MSE, SURE is independent of the ground truth and can be used in practical scenarios where the ground truth is unavailable. In our recent work, we derived SURE expressions in the context of the bilateral filter and proposed SURE-optimal bilateral filter (SOBF). We selected the optimal parameters of SOBF using the SURE criterion. To further improve the denoising performance of SOBF, we propose variants of SOBF, namely, SURE-optimal multiresolution bilateral filter (SMBF), which involves optimal bilateral filtering in a wavelet framework, and SURE-optimal patch-based bilateral filter (SPBF), where the bilateral filter parameters are optimized on small image patches. Using SURE guarantees automated parameter selection. The multiresolution and localized denoising in SMBF and SPBF, respectively, yield superior denoising performance when compared with the globally optimal SOBF. Experimental validations and comparisons show that the proposed denoisers perform on par with some state-of-the-art denoising techniques. (C) 2015 SPIE and IS&T

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a denoising algorithm which performs non-local means bilateral filtering. As existing literature suggests, non-local means (NLM) is one of the widely used denoising techniques, but has a critical drawback of smoothing of edges. In order to improve this, we perform fast and efficient NLM using Approximate Nearest Neighbour Fields and improve the edge content in denoising by formulating a joint-bilateral filter. Using the proposed joint bilateral, we are able to denoise smooth regions using the NLM approach and efficient edge reconstruction is obtained from the bilateral filter. Furthermore, to avoid tedious parameter selection, we carry out a noise estimation before performing joint bilateral filtering. The proposed approach is observed to perform well on high noise images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a design methodology to stabilize collective circular motion of a group of N-identical agents moving at unit speed around individual circles of different radii and different centers. The collective circular motion studied in this paper is characterized by the clockwise rotation of all agents around a common circle of desired radius as well as center, which is fixed. Our interest is to achieve those collective circular motions in which the phases of the agents are arranged either in synchronized, in balanced or in splay formation. In synchronized formation, the agents and their centroid move in a common direction while in balanced formation, the movement of the agents ensures a fixed location of the centroid. The splay state is a special case of balanced formation, in which the phases are separated by multiples of 2 pi/N. We derive the feedback controls and prove the asymptotic stability of the desired collective circular motion by using Lyapunov theory and the LaSalle's Invariance principle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was demonstrated in earlier work that, by approximating its range kernel using shiftable functions, the nonlinear bilateral filter can be computed using a series of fast convolutions. Previous approaches based on shiftable approximation have, however, been restricted to Gaussian range kernels. In this work, we propose a novel approximation that can be applied to any range kernel, provided it has a pointwise-convergent Fourier series. More specifically, we propose to approximate the Gaussian range kernel of the bilateral filter using a Fourier basis, where the coefficients of the basis are obtained by solving a series of least-squares problems. The coefficients can be efficiently computed using a recursive form of the QR decomposition. By controlling the cardinality of the Fourier basis, we can obtain a good tradeoff between the run-time and the filtering accuracy. In particular, we are able to guarantee subpixel accuracy for the overall filtering, which is not provided by the most existing methods for fast bilateral filtering. We present simulation results to demonstrate the speed and accuracy of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bilateral filter is known to be quite effective in denoising images corrupted with small dosages of additive Gaussian noise. The denoising performance of the filter, however, is known to degrade quickly with the increase in noise level. Several adaptations of the filter have been proposed in the literature to address this shortcoming, but often at a substantial computational overhead. In this paper, we report a simple pre-processing step that can substantially improve the denoising performance of the bilateral filter, at almost no additional cost. The modified filter is designed to be robust at large noise levels, and often tends to perform poorly below a certain noise threshold. To get the best of the original and the modified filter, we propose to combine them in a weighted fashion, where the weights are chosen to minimize (a surrogate of) the oracle mean-squared-error (MSE). The optimally-weighted filter is thus guaranteed to perform better than either of the component filters in terms of the MSE, at all noise levels. We also provide a fast algorithm for the weighted filtering. Visual and quantitative denoising results on standard test images are reported which demonstrate that the improvement over the original filter is significant both visually and in terms of PSNR. Moreover, the denoising performance of the optimally-weighted bilateral filter is competitive with the computation-intensive non-local means filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bilateral filter is a versatile non-linear filter that has found diverse applications in image processing, computer vision, computer graphics, and computational photography. A common form of the filter is the Gaussian bilateral filter in which both the spatial and range kernels are Gaussian. A direct implementation of this filter requires O(sigma(2)) operations per pixel, where sigma is the standard deviation of the spatial Gaussian. In this paper, we propose an accurate approximation algorithm that can cut down the computational complexity to O(1) per pixel for any arbitrary sigma (constant-time implementation). This is based on the observation that the range kernel operates via the translations of a fixed Gaussian over the range space, and that these translated Gaussians can be accurately approximated using the so-called Gauss-polynomials. The overall algorithm emerging from this approximation involves a series of spatial Gaussian filtering, which can be efficiently implemented (in parallel) using separability and recursion. We present some preliminary results to demonstrate that the proposed algorithm compares favorably with some of the existing fast algorithms in terms of speed and accuracy.