55 resultados para Ballasts (Electricity)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

n many parts of the world, the goal of electricity supply industries is always the introduction of competition and a lowering of the average consumer price. Because of this it has become much more important to be able to determine which generators are supplying a particular load, how much use each generator is making of a transmission line and what is generator's contribution to the system losses. In this paper a case study on generator contributions towards loads and transmission flows are illustrated with an equivalent 11-bus system, a part of Indian Southern Grid, based on the concepts of circuit flow directions, for normal and network contingency conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fly ash is a waste by-product obtained from the burning of coal by thermal power plants for generating electricity. When bulk quantities are involved, in order to arrest the fugitive dust, it is stored wet rather than dry. Fly ash contains trace concentrations of heavy metals and other substances in sufficient quantities to be able to leach out over a period of time. In this study an attempt was made to study the leachabilities of a few selected trace metals: Cd, Cu, Cr, Mn, Pb and Zn from two different types of class F fly ashes. Emphasis is also laid on developing an alternative in order to arrest the relative leachabilities of heavy metals after amending them with suitable additives. A standard laboratory leaching test for combustion residues has been employed to study the leachabilities of these trace elements as a function of liquid to solid ratio and pH. The leachability tests were conducted on powdered fly ash samples before and after amending them suitably with the matrices lime and gypsum; they were compacted to their respective proctor densities and cured for periods of 28 and 180 days. A marked reduction in the relative leachabilities of the trace elements was observed to be present at the end of 28 days. These relative leachability values further reduced marginally when tests were performed at the end of 180 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims at understanding the need for decentralized power generation systems and to explore the potential, feasibility and environmental implications of biomass gasifier-based electricity generation systems for village electrification. Electricity needs of villages are in the range of 5–20 kW depending on the size of the village. Decentralized power generation systems are desirable for low load village situations as the cost of power transmission lines is reduced and transmission and distribution losses are minimised. A biomass gasifier-based electricity generation system is one of the feasible options; the technology is readily available and has already been field tested. To meet the lighting and stationary power needs of 500,000 villages in India the land required is only 16 Mha compared to over 100 Mha of degraded land available for tree planting. In fact all the 95 Mt of woody biomass required for gasification could be obtained through biomass conservation programmes such as biogas and improved cook stoves. Thus dedication of land for energy plantations may not be required. A shift to a biomass gasifier-based power generation system leads to local benefits such as village self reliance, local employment and skill generation and promotion of in situ plant diversity plus global benefits like no net CO2 emission (as sustainable biomass harvests are possible) and a reduction in CO2 emissions (when used to substitute thermal power and diesel in irrigation pump sets).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amount of reactive power margin available in a system determines its proximity to voltage instability under normal and emergency conditions. More the reactive power margin, better is the systems security and vice-versa. A hypothetical way of improving the reactive margin of a synchronous generator is to reduce the real power generation within its mega volt-ampere (MVA) ratings. This real power generation reduction will affect its power contract agreements entered in the electricity market. Owing to this, the benefit that the generator foregoes will have to be compensated by paying them some lost opportunity cost. The objective of this study is three fold. Firstly, the reactive power margins of the generators are evaluated. Secondly, they are improved using a reactive power optimization technique and optimally placed unified power flow controllers. Thirdly, the reactive power capacity exchanges along the tie-lines are evaluated under base case and improved conditions. A detailed analysis of all the reactive power sources and sinks scattered throughout the network is carried out in the study. Studies are carried out on a real life, three zone, 72-bus equivalent Indian southern grid considering normal and contingency conditions with base case operating point and optimised results presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we have assessed the availability of land and the potential for biomass production in India to meet various demands for biomass, including modern bioenergy. This is estimated by considering the various demands on land and its suitability. The biomass production potential of energy plantations is assessed for different agroecological zones. The total woody biomass production is estimated to be 321 Mt, based on biomass productivity in the range 2 to 17 t/ha/yr for the different agro-ecological zones and considering the conservative estimate of 43 Mha land availability for biomass production. A surplus of 231 Mt of biomass (after meeting the increased demand for fuelwood and timber by the year 2010) is estimated to be available for energy, which has an electricity generation potential of 231 TWh. As a first step, only the feasible physical potential of biomass production is assessed, along with an analysis of barriers. The potential costs and benefits of biomass production strategy are not analysed. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Present work shows the feasibility of decentralized energy options for the Tumkur district in India. Decentralized energy planning (DEP) involves scaling down energy planning to subnational or regional scales. The important aspect of the energy planning at decentralized level would be to prepare an area-based DEP to meet energy needs and development of alternate energy sources at least-cost to the economy and environment. The geographical coverage and scale reflects the level at which the analysis takes place, which is an important factor in determining the structure of models. In the present work, DEP modeling under different scenarios has been carried out for Tumkur district of India for the year 2020. DEP model is suitably scaled for obtaining the optimal mix of energy resources and technologies using a computer-based goal programming technique. The rural areas of the Tumkur district have different energy needs. Results show that electricity needs can be met by biomass gasifier technology, using biomass feedstock produced by allocating only 12% of the wasteland in the district at 8 t/ha/yr of biomass productivity. Surplus electricity can be produced by adopting the option of biomass power generation from energy plantations. The surplus electricity generated can be supplied to the grid. The sustainable development scenario is a least cost scenario apart from promoting self-reliance, local employment, and environmental benefits. (C) 2010 American Institute of Chemical Engineers Environ Prog, 30: 248-258, 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a synthesis of assessment of sustainable biomass production potential in six Asian countries-China, India, Malaysia, Philippines, Sri Lanka and Thailand, and is based on the detailed studies carried out in these countries under the Asian Regional Research Programme in Energy, Environment and Climate (ARRPEEC). National level studies were undertaken to estimate land availability for biomass production, identify and evaluate the biomass production options in terms of yield per hectare and financial viability, estimate sustainable biomass production for energy, and estimate the energy potential of biomass production in the six Asian countries. Sustainable biomass production from plantation is estimated to be in the range of 182.5-210.5, 62-310, 0.4-1.7, 3.7-20.4, 2.0-9.9 and 11.6-106.6 Mt yr(-1) for China, India, Malaysia, Philippines, Sri Lanka and Thailand, respectively. The maximum annual electricity generation potential, using advanced technologies, from the sustainable biomass production is estimated to be about 27, 114, 4.5, 79, 254 and 195 percentage of the total electricity generation in year 2000 in China, India, Malaysia, Philippines, Sri Lanka and Thailand, respectively. Investment cost for bioenergy production varies from US$381 to 1842 ha(-1) in the countries considered in this study; investment cost for production of biomass varies from US$5.1 to 23 t(-1). (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Groundwater constitutes a vital natural resource for sustaining India’s agricultural economy and meeting the country’s social, ecological and environmental goals. It is a unique resource, widely available, providing security against droughts and yet it is closely linked to surface-water resources and the hydrological cycle. Its availability depends on geo-hydrological conditions and characteristics of aquifers, from deep to alluvium, sediment crystalline rocks to basalt formations; and agro-climate from humid to subhumid and semi-arid to arid. Its reliable supply, uniform quality and temperature, relative turbidity, pollution-safe, minimal evaporation losses, and low cost of development are attributes making groundwater more attractive compared to other resources. It plays a key role in the provision of safe drinking water to rural populations. For example, already almost 80% of domestic water use in rural areas in India is groundwater-supplied, and much of it is being supplied to farms, villages and small towns. Inadequate control of the use of groundwater, indiscriminate application of agrochemicals and unrestrained pollution of the rural environment by other human activities make groundwater usage unsustainable, necessitating proper management in the face of the twin demand for water of good quality for domestic supply and adequate supply for irrigation, ensuring equity, efficiency and sustainability of the resource. Groundwater irrigation has overtaken surface irrigation in the early 1980s, supported by well energization. It is estimated that there are about 24 million energised wells and tube wells now and it is driven by demand rather than availability, evident through the greater occurrence of wells in districts with high population densities. Apart from aquifer characteristics, land fragmentation and landholding size are the factors that decide the density of wells. The ‘rise and fall’ of local economies dependent on groundwater can be summarized as: the green revolution of 1980s, groundwaterbased agrarian boom, early symptoms of groundwater overdraft, and decline of the groundwater socio-ecology. The social characteristics and policy interventions typical of each stage provide a fascinating insight into the human-resource dynamics. This book is a compilation of nine research papers discussing various aspects of groundwater management. It attempts to integrate knowledge about the physical system, the socio-economic system, the institutional set-up and the policy environment to come out with a more realistic analysis of the situation with regard to the nature, characteristics and intensity of resource use, the size of the economy the use generates, and the negative socioeconomic consequences. Complex variables addressed in this regard focusing on northern Gujarat are the stock of groundwater available in the region, its hydrodynamics, its net outflows against inflows, the economics of its intensive use (particularly irrigation in semi-arid and arid regions), its criticality in the regional hydroecological regime, ethical aspects and social aspects of its use. The first chapter by Dinesh Kumar and Singh, dwells on complex groundwater socio-ecology of India, while emphasizing the need for policy measures to address indiscriminate over-exploitation of dwindling resources. The chapter also explores the nature of groundwater economy and the role of electricity prices on it. The next chapter on groundwater issue in north Gujarat provides a description of groundwater resource characteristics followed by a detailed analysis of the groundwater depletion and quality deterioration problems in the region and their undesirable consequences on the economy, ecosystem health and the society. Considering water-buyers and wellowning farmers individually, a methodology for economic valuation of groundwater in regions where its primary usage is in agriculture, and as assessment of the groundwater economy based on case studies from north Gujarat is presented in the fourth chapter. The next chapter focuses on the extent of dependency of milk production on groundwater, which includes the water embedded in green and dry fodder and animal feed. The study made a realistic estimate of irrigation water productivity in terms of the physics and economics of milk production. The sixth chapter analyses the extent of reduction in water usage, increase in yield and overall increase in physical productivity of alfalfa with the use of the drip irrigation system. The chapter also provides a detailed synthesis of the costs and benefits associated with the use of drip irrigation systems. A linear programmingbased optimization model with the objective to minimize groundwater use taking into account the interaction between two distinct components – farming and dairying under the constraints of food security and income stability for different scenarios, including shift in cropping pattern, introduction of water-efficient crops, water- saving technologies in addition to the ‘business as usual’ scenario is presented in the seventh chapter. The results show that sustaining dairy production in the region with reduced groundwater draft requires crop shifts and adoption of water-saving technologies. The eighth chapter provides evidences to prove that the presence of adequate economic incentive would encourage farmers to adopt water-saving irrigation devices, based on the findings of market research with reference to the level of awareness among farmers of technologies and the factors that decide the adoption of water-saving technologies. However, now the marginal cost of using electricity for agricultural pumping is almost zero. The economic incentives are strong and visible only when the farmers are either water-buyers or have to manage irrigation with limited water from tube-well partnerships. The ninth chapter explores the socio-economic viability of increasing the power tariff and inducing groundwater rationing as a tool for managing energy and groundwater demand, considering the current estimate of the country’s annual economic loss of Rs 320 billion towards electricity subsidy in the farm sector. The tenth chapter suggests private tradable property rights and development of water markets as the institutional tool for achieving equity, efficiency and sustainability of groundwater use. It identifies the externalities for local groundwater management and emphasizes the need for managing groundwater by local user groups, supported by a thorough analysis of groundwater socio-ecology in India. An institutional framework for managing the resource based on participatory approach that is capable of internalizing the externalities, comprising implementation of institutional and technical alternatives for resource management is also presented. Major findings of the analyses and key arguments in each chapter are summarized in the concluding chapter. Case studies of the social and economic benefits of groundwater use, where that use could be described as unsustainable, are interesting. The benefits of groundwater use are outlined and described with examples of social and economic impacts of groundwater and the negative aspects of groundwater development with the compilation of environmental problems based on up-to-date research results. This publication with a well-edited compilation of case studies is informative and constitutes a useful publication for students and professionals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bangalore is experiencing unprecedented urbanisation and sprawl in recent times due to concentrated developmental activities with impetus on industrialisation for the economic development of the region. This concentrated growth has resulted in the increase in population and consequent pressure on infrastructure, natural resources and ultimately giving rise to a plethora of serious challenges such as climate change, enhanced green-house gases emissions, lack of appropriate infrastructure, traffic congestion, and lack of basic amenities (electricity, water, and sanitation) in many localities, etc. This study shows that there has been a growth of 632% in urban areas of Greater Bangalore across 37 years (1973 to 2009). Urban heat island phenomenon is evident from large number of localities with higher local temperatures. The study unravels the pattern of growth in Greater Bangalore and its implication on local climate (an increase of ~2 to 2.5 ºC during the last decade) and also on the natural resources (76% decline in vegetation cover and 79% decline in water bodies), necessitating appropriate strategies for the sustainable management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urbanisation is the increase in the population of cities in proportion to the region's rural population. Urbanisation in India is very rapid with urban population growing at around 2.3 percent per annum. Urban sprawl refers to the dispersed development along highways or surrounding the city and in rural countryside with implications such as loss of agricultural land, open space and ecologically sensitive habitats. Sprawl is thus a pattern and pace of land use in which the rate of land consumed for urban purposes exceeds the rate of population growth resulting in an inefficient and consumptive use of land and its associated resources. This unprecedented urbanisation trend due to burgeoning population has posed serious challenges to the decision makers in the city planning and management process involving plethora of issues like infrastructure development, traffic congestion, and basic amenities (electricity, water, and sanitation), etc. In this context, to aid the decision makers in following the holistic approaches in the city and urban planning, the pattern, analysis, visualization of urban growth and its impact on natural resources has gained importance. This communication, analyses the urbanisation pattern and trends using temporal remote sensing data based on supervised learning using maximum likelihood estimation of multivariate normal density parameters and Bayesian classification approach. The technique is implemented for Greater Bangalore – one of the fastest growing city in the World, with Landsat data of 1973, 1992 and 2000, IRS LISS-3 data of 1999, 2006 and MODIS data of 2002 and 2007. The study shows that there has been a growth of 466% in urban areas of Greater Bangalore across 35 years (1973 to 2007). The study unravels the pattern of growth in Greater Bangalore and its implication on local climate and also on the natural resources, necessitating appropriate strategies for the sustainable management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid urbanisation in India has posed serious challenges to the decision makers in regional planning involving plethora of issues including provision of basic amenities (like electricity, water, sanitation, transport, etc.). Urban planning entails an understanding of landscape and urban dynamics with causal factors. Identifying, delineating and mapping landscapes on temporal scale provide an opportunity to monitor the changes, which is important for natural resource management and sustainable planning activities. Multi-source, multi-sensor, multi-temporal, multi-frequency or multi-polarization remote sensing data with efficient classification algorithms and pattern recognition techniques aid in capturing these dynamics. This paper analyses the landscape dynamics of Greater Bangalore by: (i) characterisation of direct impervious surface, (ii) computation of forest fragmentation indices and (iii) modeling to quantify and categorise urban changes. Linear unmixing is used for solving the mixed pixel problem of coarse resolution super spectral MODIS data for impervious surface characterisation. Fragmentation indices were used to classify forests – interior, perforated, edge, transitional, patch and undetermined. Based on this, urban growth model was developed to determine the type of urban growth – Infill, Expansion and Outlying growth. This helped in visualising urban growth poles and consequence of earlier policy decisions that can help in evolving strategies for effective land use policies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

India's rural energy challenges are formidable with the presence of majority energy poor. In 2005, out of a rural population of 809 million, 364 million lacked access to electricity and 726 million to modern cooking fuels. This indicates low effectiveness of government policies and programs of the past, and need for a more effective approach to bridge this gap. However, before the government can address this challenge, it is essential that it gain a deeper insight into prevailing status of energy access and reasons for such outcomes. Toward this, we perform a critical analysis of the dynamics of energy access status with respect to time, income and regions, and present the results as possible indicators of effectiveness of policies/programmes. Results indicate that energy deprivations are highest for poorest households with 93% depending on biomass for cooking and 62% lacking access to electricity. The annual growth rates in expansion in energy access are gradually declining from double digit growth rates experienced 10 years back to just around 4% in recent years. Regional variations indicate, on an average, cooking access levels were 5.3 times higher in top five states compared to bottom five states whereas this ratio was 3.4 for electricity access. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper reports the operational experience from a 100 kWe gasification power plant connected to the grid in Karnataka. Biomass Energy for Rural India (BERI) is a program that implemented gasification based power generation with an installed capacity of 0.88 MWe distributed over three locations to meet the electrical energy needs in the district of Tumkur. The operation of one 100 kWe power plant was found unsatisfactory and not meeting the designed performance. The Indian Institute of Science, Bangalore, the technology developer, took the initiative to ensure the system operation, capacity building and prove the designed performance. The power plant connected to the grid consists of the IISc gasification system which includes reactor, cooling, cleaning system, fuel drier and water treatment system to meet the producer gas quality for an engine. The producer gas is used as a fuel in Cummins India Limited, GTA 855 G model, turbo charged engine and the power output is connected to the grid. The system has operated for over 1000 continuous hours, with only about 70 h of grid outages. The total biomass consumption for 1035 h of operation was 111 t at an average of 107 kg/h. Total energy generated was 80.6 MWh reducing over loot of CO(2) emissions. The overall specific fuel consumption was about 1.36 kg/kWh, amounting to an overall efficiency from biomass to electricity of about 18%. The present operations indicate that a maintenance schedule for the plant can be at the end of 1000 h. The results for another 1000 h of operation by the local team are also presented. (C) 2011 International Energy Initiative. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy use in developing countries is heterogeneous across households. Present day global energy models are mostly too aggregate to account for this heterogeneity. Here, a bottom-up model for residential energy use that starts from key dynamic concepts on energy use in developing countries is presented and applied to India. Energy use and fuel choice is determined for five end-use functions (cooking, water heating, space heating, lighting and appliances) and for five different income quintiles in rural and urban areas. The paper specifically explores the consequences of different assumptions for income distribution and rural electrification on residential sector energy use and CO(2) emissions, finding that results are clearly sensitive to variations in these parameters. As a result of population and economic growth, total Indian residential energy use is expected to increase by around 65-75% in 2050 compared to 2005, but residential carbon emissions may increase by up to 9-10 times the 2005 level. While a more equal income distribution and rural electrification enhance the transition to commercial fuels and reduce poverty, there is a trade-off in terms of higher CO(2) emissions via increased electricity use. (C) 2011 Elsevier Ltd. All rights reserved.