43 resultados para Bacterial cells
Resumo:
The utility of a soil microbe, namely Bacillus polymyxa, in the removal of organic reagents such as dodecylamine, ether diamine, isopropyl xanthate and sodium oleate from aqueous solutions is demonstrated. Time-bound removal of the above organic reagents from an alkaline solution was investigated under different experimental conditions during bacterial growth and in the presence of metabolites by frequent monitoring of residual concentrations as a function of time, reagent concentration and cell density. The stages and mechanisms in the biodegradation process were monitored through UV-visible and FTIR spectroscopy. Surface chemistry of the bacterial cells as well as the biosorption tendency for various organics were also established through electrokinetic and adsorption density measurements. Both the cationic amines were found to be biosorbed followed by their degradation through bacterial metabolism. The presence of the organic reagents promoted bacterial growth through effective bacterial utilization of nitrogen and carbon from the organics. Under optimal conditions, complete degradation and bioremoval of all the organics could be achieved.
Resumo:
A bacterium Bacillus polymyxa was found to be capable of selective removal of calcium and iron from bauxite. The bioleached residue was found to be enriched in its alumina content with insignificant amounts of iron and calcium as impurities. The developed bio- process was found to be capable of producing a bauxite product which meets the specifica- tions as a raw material for the manufacture of alumina based ceramics and refractories. The role of bacterial cells and metabolic products in the selective dissolution of calcium (present as calcite) and iron (present as hematite and goethite) from bauxite was assessed and possi- ble mechanisms illustrated. The effect of different parameters such as sucrose concentra- tion, pH, pulp density and time on selective biodissolution was studied. It was observed that periodic decantation and replenishment of the leach medium was beneficial in improving the dissolution kinetics. Calcium removal involves chelation with bacterial exopolysaccha- tides and acidolysis by organic acid generation. Hematite could be solubilized through a reductive dissolution mechanism.
Resumo:
Cells and metabolic products of Bacillus subtilis were used in microbially-induced flocculation and flotation to separate pyrite from galena. Enhanced selective affinity of bacterial cells towards pyrite was observed when compared to galena through adsorption studies. Both extracellular (EP) and intracellular (IP) bacterial proteins were isolated from B. subtilis before and after interaction with the minerals and their profiles established through SDS-PAGE. Protein fractions exhibited significant surface affinity towards galena when compared to pyrite. Presence of galena during bacterial growth promoted increased generation of extracellular proteins, while that of pyrite resulted in enhanced production of exopolysaccharides. Galena surfaces were rendered hydrophobic after bacterial interaction.
Resumo:
This paper reports on the characterization of an integrated micro-fluidic platform for controlled electrical lysis of biological cells and subsequent extraction of intracellular biomolecules. The proposed methodology is capable of high throughput electrical cell lysis facilitated by nano-composite coated electrodes. The nano-composites are synthesized using Carbon Nanotube and ZnO nanorod dispersion in polymer. Bacterial cells are used to demonstrate the lysis performance of these nanocomposite electrodes. Investigation of electrical lysis in the microchannel is carried out under different parameters, one with continuous DC application and the other under DC biased AC electric field. Lysis in DC field is dependent on optimal field strength and governed by the cell type. By introducing the AC electrical field, the electrokinetics is controlled to prevent cell clogging in the micro-channel and ensure uniform cell dispersion and lysis. Lysis mechanism is analyzed with time-resolved fluorescence imaging which reveal the time scale of electrical lysis and explain the dynamic behavior of GFP-expressing E. coli cells under the electric field induced by nanocomposite electrodes. The DNA and protein samples extracted after lysis are compared with those obtained from a conventional chemical lysis method by using a UV-Visible spectroscopy and fluorimetry. The paper also focuses on the mechanistic understanding of the nano-composite coating material and the film thickness on the leakage charge densities which lead to differential lysis efficiency.
Resumo:
An industrial waste liquor having high sulfate concentrations was subjected to biological treatment using the sulfate-reducing bacteria (SRB) Desulfovibrio desulfuricans. Toxicity levels of different sulfate, cobalt and nickel concentrations toward growth of the SRB with respect to biological sulfate reduction kinetics was initially established. Optimum sulfate concentration to promote SRB growth amounted to 0.8 - 1 g/L. The strain of D. desulfuricans used in this study initially tolerated up to 4 -5 g/L of sulfate or 50 mg/L of cobalt and nickel, while its tolerance could be further enhanced through adaptation by serial subculturing in the presence of increasing concentrations of sulfate, cobalt and nickel. From the waste liquor, more than 70% of sulfate and 95% of cobalt and nickel could be precipitated as sulfides, using a preadapted strain of D. desulfuricans. Probable mechanisms involving biological sulfide precipitation and metal adsorption onto precipitates and bacterial cells are discussed.
Resumo:
Biodegradation of sodium isopropyl xanthate using two types of bacterial strains, Paenibacillus polymyxa and Pseudomonas putida, is demonstrated. At concentrations higher than 50 mg/L, the presence of xanthate in the growth medium resulted in bacterial toxicity, retarding growth kinetics. Adaptation through serial subculturing in the presence of higher xanthate concentrations resulted in the development of xanthate-tolerant bacterial strains. Stress proteins secreted by bacterial cells grown in the presence of xanthate were isolated. Bacterial cells could utilize xanthate as a growth substrate, degrading xanthate species in the process. Acidic metabolic products generated by bacterial metabolism promoted efficient xanthate decomposition. Probable mechanisms for the biodegradation of isopropyl xanthate are illustrated.
Resumo:
Microbially induced selective flocculation of hematite from kaolinite has been demonstrated using Bacillus subtilis. Growth of bacterial cells in the presence of kaolinite resulted in enhanced production of extracellular proteins while that of hematite promoted significant secretion of exopolysaccharides. Bacterial cells were adapted to grow in the presence of the minerals and use of hematite-grown and kaolinite-grown cells and their metabolic products in the selective flocculation of hematite and dispersion of kaolinite illustrated. Bacterial cells and extracellular polysaccharides exhibited higher surface affinity towards hematite, rendering it hydrophilic; while significant protein adsorption enhanced surface hydrophobicity of kaolinite. Bacterial interaction with hematite and kaolinite resulted in significant surface chemical changes on the minerals. Due to higher surface affinity towards extracellular proteins, zeta potentials of kaolinite shifted in the positive direction, while those of hematite shifted in the negative direction due to higher adsorption of extracellular polysaccharides. Bacterial interaction promoted selective flocculation of only hematite, while kaolinite was efficiently dispersed. Mineral-specific stress proteins were generated on growing B. subtilis in the presence of kaolinite. Interfacial aspects of microbe-mineral interactions are illustrated to explain microbially-induced selective flocculation of hematite from kaolinite with relevance to clay and iron ore beneficiation. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using cells and extracellular secretions of Bacillus megaterium after adaptation to the chosen minerals. The extracellular secretions obtained after thermolysis of bacterial cells adapted to sphalerite yield the highest flotation recovery of sphalerite with a selectivity index value of 24.5, in comparison to the other cellular and extra-cellular bio-reagents studied. The protein profile for the unadapted and mineral-adapted cells has been found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances (EPS). The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of B. megaterium have been quantified. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface charge of the bacterial cells as well as the minerals under study has been confirmed using various enzymatic treatments of the bacterial cells. It has been demonstrated that the induction of additional molecular weight protein fractions as well as the higher amount of extracellular proteins and phosphate secreted after adaptation to sphalerite vis-A-vis galena are contributory factors for the selective separation of sphalerite from galena. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.7 was achieved in the presence of the soluble fraction of the thermolysed cells, which was higher than that obtained with the intact cells (SI of 6.5) and the insoluble fraction of the thermolysed cells (SI of 9.6). The results of the various enzymatic treatment tests revealed that extracellular DNA played a vital role in the selective flotation of sphalerite. A noteworthy finding was that the single-stranded DNA (ssDNA) had a higher biocollector capacity vis-A -vis the double-stranded DNA (dsDNA), leading to better flotation efficiency. About 95 % recovery of sphalerite could be achieved from the mineral mixture by the combined addition of the ssDNA with the non-DNA components of the bacterial cells, resulting in a maximum SI of 19.1. Calcium and phosphate components of the nutrient media were found to be essential for better selectivity of separation of sphalerite. The mechanisms of microbe-mineral interaction are discussed.
Resumo:
Background: MazEF is a chromosomally encoded bacterial toxin-antitoxin system whose cellular role is controversial. Results: Expression of chromosomal MazF inhibits cell killing by multiple antibiotics in a Lon and ClpP dependent manner. Conclusion: MazF is involved in reversible growth inhibition and bacterial drug tolerance. Significance: Inactive, active-site toxin mutants yield functional insights by selectively activating the corresponding WT toxin in vivo. Toxin-antitoxin systems are ubiquitous in nature and present on the chromosomes of both bacteria and archaea. MazEF is a type II toxin-antitoxin system present on the chromosome of Escherichia coli and other bacteria. Whether MazEF is involved in programmed cell death or reversible growth inhibition and bacterial persistence is a matter of debate. In the present work the role of MazF in bacterial physiology was studied by using an inactive, active-site mutant of MazF, E24A, to activate WT MazF expression from its own promoter. The ectopic expression of E24A MazF in a strain containing WT mazEF resulted in reversible growth arrest. Normal growth resumed on inhibiting the expression of E24A MazF. MazF-mediated growth arrest resulted in an increase in survival of bacterial cells during antibiotic stress. This was studied by activation of mazEF either by overexpression of an inactive, active-site mutant or pre-exposure to a sublethal dose of antibiotic. The MazF-mediated persistence phenotype was found to be independent of RecA and dependent on the presence of the ClpP and Lon proteases. This study confirms the role of MazEF in reversible growth inhibition and persistence.
Resumo:
The effect of applied DC potentials on the bioleaching of a chalcopyrite concentrate in the presence of Acidithiobacillus ferrooxidans is discussed. Copper dissolution was the highest at an applied potential of +600mV (SCE), while all the dissolved copper got cathodically deposited at a negative potential of -600mV (SCE). Electrobioleaching at an applied potential of +600mV (SCE) was established at different pulp densities as a function of time. The effect of applied potentials and electrolytic currents on the activity and growth of bacterial cells was assessed Preadaptation of bacterial cells to the concentrate slurry and electrolytic growth conditions significantly enhanced copper dissolution. Electrochemical and biochemical mechanisms involved in electrobioleaching are illustrated with respect to oxidative dissolution and biocatalysis of anodic oxidation.
Resumo:
There is a persistent need to assess the effects of TiO2 nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO2 nanoparticle-induced acute toxicity at sub-ppm level (<= 1 ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both light and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
In this work, porous membranes were designed by selectively etching the PEO phase, by water, from a melt-mixed PE/PEO blend. The pure water flux and the resistance across the membrane were systematically evaluated by employing an indigenously developed cross flow membrane setup. Both the phase morphology and the cross sectional morphology of the membranes was assessed by scanning electron microscopy and an attempt was made to correlate the observed morphology with the membrane performance. In order to design antibacterial membranes for water purification, partially reduced graphene oxide (rGO), silver nanoparticles (Ag) and silver nanoparticles decorated with rGO (rGO-Ag) were synthesized and incorporated directly into the blends during melt mixing. The loss of viability of bacterial cells was determined by the colony counting method using E. coli as a model bacterium. SEM images display that the direct contact with the rGO-Ag nanoparticles disrupts the cell membrane. In addition, the rGO-Ag nanoparticles exhibited a synergistic effect with respect to bacterial cell viability in comparison to both rGO and Ag nanoparticles. The possible mechanism associated with the antibacterial activity in the membranes was discussed. This study opens new avenues in designing antibacterial membranes for water purification.
Resumo:
The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.
Resumo:
The selective flotation of sphalerite from a sphalerite-galena mineral mixture was achieved using cellular components of Paenibacillus polymyxa after adaptation to the above minerals. The soluble and insoluble fractions of the thermolysed bacterial cells adapted to sphalerite yielded higher flotation recoveries of sphalerite with selectivity indices ranging between 22 and 29. The protein profile for the unadapted and mineral-stressed cells was found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances. The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of P. polymyxa were quantified. In keeping with these changes, a marginal morphological transition of P. polymyxa from rods to spheres was observed. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface potential of the mineral-stressed cells were demonstrated. These studies highlighted that, mineral stress led to qualitative and quantitative changes in the cellular components, which facilitated the enhancement of flotation selectivity of sphalerite.