60 resultados para Ba bio
Resumo:
Recent experimental investigations of phase equilibria and thermodynamic properties of the systems M-Pb-O, where M = Ca, Sr or Ba, indicate a regular increase in thermodynamic stability of ternary oxides, MPbO3 and M2PbO4, with increasing basicity of the oxide of the alkaline-earth metal. Number of stable interoxide compounds at 1100 K in the systems M-Pb-O (M = Mg, Ca, Sr, Ba) increases in unit increments from Mg to Ba. In this paper, experimentally determined standard Gibbs energies of formation of M2PbO4 (M = Ca, Sr, Ba) and MPbO3 (M = Sr, Ba) from their component binary monoxides and oxygen gas are combined with an estimated value for CaPbO3 to delineate systematic trends in thermodynamic stability of the ternary oxides. The trends are interpreted using concepts of tolerance factor and acid-base interactions. All the ternary oxides in these systems contain lead in the tetravalent state. The small Pb4+ ions polarize the surrounding oxygen ions and cause the formation of oxyanions which are acidic in character. Hence, the higher oxidation state of lead is stabilized in the presence of basic oxides of alkaline-earth group. A schematic subsolidus temperature-composition phase diagram is presented for the system BaO-PbO-O-2 to illustrate the change in oxidation states in binary and ternary oxides with temperature.
Resumo:
The microstructural dependence of electrical properties of (Ba, Sr)TiO3(BST) thin films were studied from the viewpoint of dc and ac electrical properties. The films were grown using a pulsed laser deposition technique in a temperature range of 300 to 600 degrees C, inducing changes in grain size, structure, and morphology. Consequently, two different types of films were realized, of which type I, was polycrystalline, multigrained, while type II was [100] oriented possessing a densely packed fibrous microstructure. Leakage current measurements were done at elevated temperatures to provide evidence of the conduction mechanism present in these films. The results revealed a contribution from both electronic and ionic conduction. In the case of type I films, two trapping levels were identified with energies around 0.5 and 2.73 eV, which possibly originate from oxygen vacancies V-O and Ti3+ centers, respectively. These levels act as shallow and deep traps and are reflected in the current-voltage characteristics of the BST thin films. The activation energy associated with oxygen vacancy motion in this case was obtained as 1.28 eV. On the contrary, type II films showed no evidence of deep trap energy levels, while the identified activation energy associated with shallow traps was obtained as 0.38 eV. The activation energy obtained for oxygen vacancy motion in type II films was around 1.02 eV. The dc measurement results were further elucidated through ac impedance analysis, which revealed a grain boundary dominated response in type I in comparison to type II films where grain response is highlighted. A comparison of the mean relaxation time of the two films revealed three orders of magnitude higher relaxation time in the case of type I films. Due to smaller grain size in type I films the grains were considered to be completely depleted giving rise to only grain boundary response for the bulk of the film. The activation energy obtained from conductivity plots agree very well with that of dc measurements giving values 1.3 and 1.07 eV for type I and type II films, respectively. Since oxygen vacancy transport have been identified as the origin of resistance degradation in BST thin films, type I films with their higher value of activation energy for oxygen ion mobility explains the improvement in breakdown characteristics under constant high dc field stress. The role of microstructure in controlling the rate of degradation is found useful in this instance to enhance the film properties under high electric field stresses. (C) 2000 American Institute of Physics. [S0021-8979(00)00418-7].
Resumo:
Several oxides of the Bi m M n Cu p O x family (m=2, 3;n=2, 3, 4;p=1, 2, 3 and M=alkaline earth or Bi), possessing structures similar to the Aurivillius family of oxides, show highT c superconductivity.
Resumo:
Anhydrobiotic organisms undergo periods of acute dehydration during their life cycle. It is of interest to understand how the biomembrane remains intact through such stress. A disaccharide, trehalose, which is metabolised during anhydrobiosis is found to prevent disruption of model membrane systems. Molecular modelling techniques are used to investigate the possible mode of interaction of trehalose with a model monolayer. The objective is to maximise hydrogen bonding between the two systems. A phospholipid matrix consisting of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) is chosen to represent the monolayer. The crystal structure of DMPC reveals that there are two distinct conformers designated as A and B. An expansion of the monolayer, coplanar with its surface, results in the trehalose molecule being accommodated in a pocket formed by four B conformers. One glucose ring of the sugar rests on the hydrophobic patch provided by the choline methyls of an A conformer. Five hydrogen bonds are formed involving the phosphate oxygens of three of the surrounding B conformers. The model will be discussed with reference to relevant experimental data on the interaction.
Resumo:
Thin films of Y--Ba--Cu--O have been prepared by conventional methods of RF sputtering. The films exhibit superconducting onset temperatures as high as 91K, midpoint at 80K and a zero resistance state at 35K. Critical current measurements implied critical current densities of the order of 31 A/cm exp 2 . An attempt has been made to establish the role of substrate and various deposition parameters. 7 ref.--AA.
Resumo:
Oxides with different cation ratios 2122, 2212, 2213 and 2223 in the Ti-Ca-Ba-Cu-O system exhibit onset of superconductivity in the 110–125 K range with zero-resistance in the 95–105 K range. Electron microscopic studies show dislocations, layered morphology and other interesting features. These oxides absorb electromagnetic radiation (9.11 GHz) in the superconducting phase.
Resumo:
It is possible to substitute Bi in the superconducting BaPb0.75Bi0.25O3 by Sb or Te without destroying the superconductivity. With Sb, a continuous series of solid solutions BaPb0.75Bi0.25?ySbyO3 (0 less-than-or-equals, slant y less-than-or-equals, slant 0.25) exists, while with Te, perovskite BaPb0.75Bi0.25?yTeyO3 exists only upto y = 0.15. With increasing substitution by Sb or Te, Tc decreases continously in both the systems. Superconductivity with a maximum Tc of 8K is found in Ba0.9La0.1Pb0.9?yBiyTl0.1O3 for y = 0.25.
Resumo:
Pressure and temperature dependence of 35Cl nuclear quadrupole resonance (NQR) has been investigated in NaClO3 and Ba(ClO3)2·H2O. NQR frequencies are measured in the temperature range 77–300 K and up to 5 kbar pressure. The torsional frequency of the ClO3 pyramid and its variation with both pressure and temperature are evaluated from the NQR frequencies under the harmonic approximation. In general, the pressure effect on the internal motions is found to be less in Ba (ClO3)2·H2O compared to NaClO3. When the samples are cooled to 77 K the pressure coeffecient of NQR frequency becomes nearly zero in sodium chlorate, whereas it retains a value of 6 kHz kbar−1 in barium chlorate. This behaviour follows from the fact that at 77K, the torsional frequency in NaClO3 is unaffected by the application of pressure while it increases at the rate 12 cm−1 kbar−1 in Ba(ClO3)2·H2O.
Resumo:
Three new aluminoborates having the composition MAl3BO7, where M = Ca,Sr or Ba, have been prepared. X-ray diffraction data indicate that all the phases are monoclinic, with close structural similarity to the meta stable aluminate, SrAl4O7. These aluminoborates are good host lattices for Eu2+ luminescence. The emission spectra show multiple bands in the blue region, corresponding to two inequivalent sites in each case, with one of them having quantum efficiency greater-than or equivalent to 75%. In the case of SrAl3BO7:Eu2+, the d–f band emission dominates at 300 K whereas at 77 K both d–f band and f–f line emissions are observed. Efficient Eu2+→Mn2+ energy transfer is observed in MAl3BO7 leading to strong green emission of Mn2+in the tetrahedral sites.aluminoborates; europium
Resumo:
This article discusses the potential of bio-dimethyl ether (DME) as a promising fuel for India in the transportation sector where a majority of imported petroleum in the form of diesel is used. Specifically, the suitability of DME in terms of its properties vis-a-vis those of diesel, ability to liquefy DME at low pressures similar to liquefied petroleum gas (LPG), and ease of production from renewable feedstock (biomass), and most importantly, very low emissions including near-zero soot levels are some of the features that make it an attractive option. A detailed review presents the state-of-the-art on various aspects such as estimates of potential bio-DME production, methods of synthesis of bio-DME, important physicochemical properties, fuel-injection system-related concerns (both conventional and common-rail system), fuel spray characteristics which have a direct bearing on the engine performance, and finally, exhaust emissions. Future research directions covering all aspects from production to utilization are summarized (C) 2010 American Institute of Physics. doi:10.1063/1.3489529]
Resumo:
A systematic investigation of monatomic spherical sorbates in the supercages of zeolites Y and A by molecular dynamics technique is presented. Rates of intercage diffusion, rates of cage visits, and the diffusion coefficients have been calculated as a function of the sorbate-zeolite interaction strength. These properties exhibit markedly different dependences on interaction strength for the two zeolites. The observed behavior is shown to be a consequence of the two principal mechanisms of intercage diffusion and the energetic barrier associated with them. The diffusion coefficient and other properties associated with intercage diffusion are found to be directly proportional to the reciprocal of the square of the sorbate diameter when the sorbate diameter is significantly smaller than the window diameter. As the sorbate diameter increases, a peak is observed in all the transport properties investigated including the diffusion coefficient. We call this surprising effect as the ring or levitation effect and it explains several anomalous results reported in the literature and suggests a breakdown of the geometrical criterion for diffusion of sorbates. It shows that under certain conditions nongeometrical factors play a major role and geometrical factors become secondary in the determination of the molecular sieve property. A generalized parameter has been proposed which suggests conditions under which one can expect the ring or levitation effect in any porous medium. Inverse size selectivity becomes operative under these conditions.
Resumo:
Silver nanoparticles are being extensively studied due to their widespread applications and unique properties. In the present study, the growth kinetics of silver nanoparticles as synthesized on reduction of silver nitrate solution by aqueous extract of Azadirachta indica leaves was investigated. The formation of silver nanoparticles was preliminarily monitored by measuring the absorption maxima at different time intervals after adding the reducing agent to the silver salt solution (0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 h). At different time points characterization studies were conducted using X-ray diffraction studies, FT-IR techniques, zeta potential studies and transmission electron microscopy. The total available silver in the reaction medium was determined at different durations using ICP-OES. The changes in reduction potential in the medium were also monitored using potentiometric analysis. The results confirm a definite change in the medium pertaining to formation of the stable nanoparticles after 2 h, and a significant increase in the agglomeration tendency after 4 h of interaction. The growth kinetic data of the nanoparticles till 3.5 h was found to fit the LSW model confirming diffusion limited growth. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Cubic cuprates (a not, vert, similar 18.6 Å) with a BaCuO2-type structure were obtained in the Ba-Pb-Cu-O and Ba-Bi-Cu-O systems by the reaction of the component oxides at a high temperature (1370-1420 K), followed by quenching. By annealing these phases in oxygen at 1070-1120 K, perovskite-like phase (a not, vert, similar 4.3 Å) of the formulae BaPb1-xCuxO3-y and BaBi1-xCuxO3-y (0 < x ? 0.5) were obtained. A perovskite of nominal composition BaPb0.25Tl0.25 Cu0.5O3-y, prepared by a similar procedure, was found to be superconducting with a Tc of not, vert, similar 70 K.
Resumo:
Donor-doped n-(Ba,Pb)TiO3 polycrystalline ceramics exhibit distinctly two-step positive temperature coefficient of resistance (PTCR) characteristics when formulated with suitable combinations of B2O3 and Al2O3 as grain boundary modifiers by heterogeneous addition. B2O3 or Al2O3 when added singularly resulted in either steep or broad PTCR jumps respectively across the phase transition. The two-step PTCR is attributed to the activation of the acceptor states, created through B2O3 and Al2O3, for various temperature regimes above the Curie point (T-c). The changing pattern of trap states is evident from the presence of Ti4+-O--Al3+ type hole centres in the grain boundary layer regions, identified in the electron paramagnetic resonance (EPR) spectra. That charge redistribution occurs among the inter-band gap defect states on crossing the Curie temperature is substantiated by the temperature coefficient in the EPR results. Capacitance-voltage results clearly show that there is an increase in the density of trap states with the addition of B2O3 and Al2O3. The spread in energy values of these trap states is evident from the large change in barrier height (phi similar or equal to 0.25-0.6 eV) between 500 and 650 K.