227 resultados para Averaging Theorem
Resumo:
We present a simple proof of Toda′s result (Toda (1989), in "Proceedings, 30th Annual IEEE Symposium on Foundations of Computer Science," pp. 514-519), which states that circled plus P is hard for the Polynomial Hierarchy under randomized reductions. Our approach is circuit-based in the sense that we start with uniform circuit definitions of the Polynomial Hierarchy and apply the Valiant-Vazirani lemma on these circuits (Valiant and Vazirani (1986), Thoeret. Comput. Sci.47, 85-93).
Resumo:
The no-hiding theorem says that if any physical process leads to bleaching of quantum information from the original system, then it must reside in the rest of the Universe with no information being hidden in the correlation between these two subsystems. Here, we report an experimental test of the no-hiding theorem with the technique of nuclear magnetic resonance. We use the quantum state randomization of a qubit as one example of the bleaching process and show that the missing information can be fully recovered up to local unitary transformations in the ancilla qubits.
Resumo:
In this paper the question of the extent to which truncated heavy tailed random vectors, taking values in a Banach space, retain the characteristic features of heavy tailed random vectors, is answered from the point of view of the central limit theorem.
Resumo:
A systematic method is formulated to carry out theoretical analysis in a multilocus multiallele genetic system. As a special application, the Fundamental Theorem of Natural Selection is proved (in the continuous time model) for a multilocus multiallele system if all pairwise linkage disequilibria are zero.
Resumo:
In this paper, we give a generalization of a result by Borkar and Meyn (2000) 1], on the stability and convergence of synchronous-update stochastic approximation algorithms, to the case of asynchronous stochastic approximations with delays. We then describe an interesting application of the result to asynchronous distributed temporal difference (TD) learning with function approximation and delays. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We formulate and prove two versions of Miyachi�s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi�s theorem for the group Fourier transform.
Resumo:
We know, from the classical work of Tarski on real closed fields, that elimination is, in principle, a fundamental engine for mechanized deduction. But, in practice, the high complexity of elimination algorithms has limited their use in the realization of mechanical theorem proving. We advocate qualitative theorem proving, where elimination is attractive since most processes of reasoning take place through the elimination of middle terms, and because the computational complexity of the proof is not an issue. Indeed what we need is the existence of the proof and not its mechanization. In this paper, we treat the linear case and illustrate the power of this paradigm by giving extremely simple proofs of two central theorems in the complexity and geometry of linear programming.
Resumo:
We formulate and prove two versions of Miyachi’s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi’s theorem for the group Fourier transform.
Resumo:
We study the empirical measure LA of the eigenvalues of nonnormal square matrices of the form A(n) = U(n)T(n)V(n), with U(n), V(n) independent Haar distributed on the unitary group and T(n) diagonal. We show that when the empirical measure of the eigenyalues of T(n) converges, and T(n) satisfies some technical conditions, L(An) converges towards a rotationally invariant measure mu on the complex plane whose support is a single ring. In particular, we provide a complete proof of the Feinberg-Zee single ring theorem [6]. We also consider the case where U(n), V(n) are independently Haar distributed on the orthogonal group.
Resumo:
We show that the Wiener Tauberian property holds for the Heisenberg Motion group TnB
Resumo:
The altered spontaneous emission of an emitter near an arbitrary body can be elucidated using an energy balance of the electromagnetic field. From a classical point of view it is trivial to show that the field scattered back from any body should alter the emission of the source. But it is not at all apparent that the total radiative and non-radiative decay in an arbitrary body can add to the vacuum decay rate of the emitter (i.e.) an increase of emission that is just as much as the body absorbs and radiates in all directions. This gives us an opportunity to revisit two other elegant classical ideas of the past, the optical theorem and the Wheeler-Feynman absorber theory of radiation. It also provides us alternative perspectives of Purcell effect and generalizes many of its manifestations, both enhancement and inhibition of emission. When the optical density of states of a body or a material is difficult to resolve (in a complex geometry or a highly inhomogeneous volume) such a generalization offers new directions to solutions. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Bhutani N, Ray S, Murthy A. Is saccade averaging determined by visual processing or movement planning? J Neurophysiol 108: 3161-3171, 2012. First published September 26, 2012; doi:10.1152/jn.00344.2012.-Saccadic averaging that causes subjects' gaze to land between the location of two targets when faced with simultaneously or sequentially presented stimuli has been often used as a probe to investigate the nature of computations that transform sensory representations into an oculomotor plan. Since saccadic movements involve at least two processing stages-a visual stage that selects a target and a movement stage that prepares the response-saccade averaging can either occur due to interference in visual processing or movement planning. By having human subjects perform two versions of a saccadic double-step task, in which the stimuli remained the same, but different instructions were provided (REDIRECT gaze to the later-appearing target vs. FOLLOW the sequence of targets in their order of appearance), we tested two alternative hypotheses. If saccade averaging were due to visual processing alone, the pattern of saccade averaging is expected to remain the same across task conditions. However, whereas subjects produced averaged saccades between two targets in the FOLLOW condition, they produced hypometric saccades in the direction of the initial target in the REDIRECT condition, suggesting that the interaction between competing movement plans produces saccade averaging.
Resumo:
Low density parity-check (LDPC) codes are a class of linear block codes that are decoded by running belief propagation (BP) algorithm or log-likelihood ratio belief propagation (LLR-BP) over the factor graph of the code. One of the disadvantages of LDPC codes is the onset of an error floor at high values of signal to noise ratio caused by trapping sets. In this paper, we propose a two stage decoder to deal with different types of trapping sets. Oscillating trapping sets are taken care by the first stage of the decoder and the elementary trapping sets are handled by the second stage of the decoder. Simulation results on the regular PEG (504,252,3,6) code and the irregular PEG (1024,518,15,8) code shows that the proposed two stage decoder performs significantly better than the standard decoder.
Resumo:
By a theorem of Gromov, for an almost complex structure J on CP2 tamed by the standard symplectic structure, the J-holomorphic curves representing the positive generator of homology form a projective plane. We show that this satisfies the Theorem of Desargues if and only if J is isomorphic to the standard complex structure. This answers a question of Ghys. (C) 2013 Published by Elsevier Masson SAS on behalf of Academie des sciences.