44 resultados para Automata


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses the behaviour of a general class of learning automata algorithms for feedforward connectionist systems in an associative reinforcement learning environment. The type of connectionist system considered is also fairly general. The associative reinforcement learning task is first posed as a constrained maximization problem. The algorithm is approximated hy an ordinary differential equation using weak convergence techniques. The equilibrium points of the ordinary differential equation are then compared with the solutions to the constrained maximization problem to show that the algorithm does behave as desired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A feedforward network composed of units of teams of parameterized learning automata is considered as a model of a reinforcement teaming system. The internal state vector of each learning automaton is updated using an algorithm consisting of a gradient following term and a random perturbation term. It is shown that the algorithm weakly converges to a solution of the Langevin equation implying that the algorithm globally maximizes an appropriate function. The algorithm is decentralized, and the units do not have any information exchange during updating. Simulation results on common payoff games and pattern recognition problems show that reasonable rates of convergence can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We identify a class of timed automata, which we call counter-free input-determined automata, which characterize the class of timed languages definable by several timed temporal logics in the literature, including MTL. We make use of this characterization to show that MTL+Past satisfies an “ultimate stability” property with respect to periodic sequences of timed words. Our results hold for both the pointwise and continuous semantics. Along the way we generalize the result of McNaughton-Papert to show a counter-free automata characterization of FO-definable finitely varying functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a general class of timed automata parameterized by a set of “input-determined” operators, in a continuous time setting. We show that for any such set of operators, we have a monadic second order logic characterization of the class of timed languages accepted by the corresponding class of automata. Further, we consider natural timed temporal logics based on these operators, and show that they are expressively equivalent to the first-order fragment of the corresponding MSO logics. As a corollary of these general results we obtain an expressive completeness result for the continuous version of MTL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On introduit une nouvelle classe de schémas de renforcement des automates d'apprentissage utilisant les estimations des caractéristiques aléatoires de l'environnement. On montre que les algorithmes convergent en probabilité vers le choix optimal des actions. On présente les résultats de simulation et on suggère des applications à un environnement à plusieurs apprentissages

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) intercept the traffic at an organization's network periphery to thwart intrusion attempts. Signature-based NIDS compares the intercepted packets against its database of known vulnerabilities and malware signatures to detect such cyber attacks. These signatures are represented using Regular Expressions (REs) and strings. Regular Expressions, because of their higher expressive power, are preferred over simple strings to write these signatures. We present Cascaded Automata Architecture to perform memory efficient Regular Expression pattern matching using existing string matching solutions. The proposed architecture performs two stage Regular Expression pattern matching. We replace the substring and character class components of the Regular Expression with new symbols. We address the challenges involved in this approach. We augment the Word-based Automata, obtained from the re-written Regular Expressions, with counter-based states and length bound transitions to perform Regular Expression pattern matching. We evaluated our architecture on Regular Expressions taken from Snort rulesets. We were able to reduce the number of automata states between 50% to 85%. Additionally, we could reduce the number of transitions by a factor of 3 leading to further reduction in the memory requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi temporal land use information were derived using two decades remote sensing data and simulated for 2012 and 2020 with Cellular Automata (CA) considering scenarios, change probabilities (through Markov chain) and Multi Criteria Evaluation (MCE). Agents and constraints were considered for modeling the urbanization process. Agents were nornmlized through fiizzyfication and priority weights were assigned through Analytical Hierarchical Process (AHP) pairwise comparison for each factor (in MCE) to derive behavior-oriented rules of transition for each land use class. Simulation shows a good agreement with the classified data. Fuzzy and AHP helped in analyzing the effects of agents of growth clearly and CA-Markov proved as a powerful tool in modelling and helped in capturing and visualizing the spatiotemporal patterns of urbanization. This provided rapid land evaluation framework with the essential insights of the urban trajectory for effective sustainable city planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.