42 resultados para Autogenous shrinkage


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of spurious increase in volume fraction of second-phase particles during computer simulations of coarsening is examined. The origin of this problem is traced to the use of too long a time step (used for numerical integration of growth rates with respect to time) which leads to small particles with large negative growth rates shrinking to negative radii at the end of the time step. Such a shrinkage to negative sizes has the effect of pumping solute into the system. It is therefore suggested that the length of the time step be chosen in accordance with the size of the smallest particle present in the system. It is shown that spurious increase in particle Volume has a significant effect on the particle size distributions in the scaling regime (making them broader and more skewed in the Lifshitz-Slyozov-Wagner model). Its effect on coarsening kinetics, however, is found to be small.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper critically appraises the limitations of the liquid-limit water content of clayey soils determined conventionally either by percussion cup or by the cone penetration method. It is shown that the conventional liquid limit and plastic limit are arbitrary, strength-based water contents and that they cannot represent the plasticity limits, and that the state of the soil-water system at the conventional liquid limit does not correspond to a stress-free reference state. The present investigation identifies three characteristic limiting water contents for a soil-water system which have well-defined, unique mechanisms controlling them, namely the free swell limit, settling limit and shrinkage limit. Simple procedures for the determination of the free swell limit and settling limit of natural soils are presented. The settling limit is shown to be the 'real liquid limit' of any clayey soil. With a number of experimental illustrations, it is clearly shown that the settling limit represents the maximum water-holding capacity of clayey soils and that it corresponds to the stress-free reference state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silane (SiH4) was used as an n-type dopant in GaAs grown by low pressure metalorganic vapor phase epitaxy using trimethylgallium (TMGa) and arsine (AsH3) as source materials. The electron carrier concentrations and silicon (Si) incorporation efficiency are studied by using Hall effect, electrochemical capacitance voltage profiler and low temperature photoluminescence (LTPL) spectroscopy. The influence of growth parameters, such as SiH4 mole fraction, growth temperature, TMGa and AsH3 mole fractions on the Si incorporation efficiency have been studied. The electron concentration increases with increasing SIH4 mole fraction, growth temperature, and decreases with increasing TMGa and AsH3 mole fractions. The decrease in electron concentration with increasing TMGa can be explained by vacancy control model. The PL experiments were carried out as a function of electron concentration (10(17) - 1.5 x 10(18) cm(-3)). The PL main peak shifts to higher energy and the full width at half maximum (FWHM) increases with increasing electron concentrations. We have obtained an empirical relation for FWHM of PL, Delta E(n) (eV) = 1.4 x 10(-8) n(1/3). We also obtained an empirical relation for the band gap shrinkage, Delta E-g in Si-doped GaAs as a function of electron concentration. The value of Delta E-g (eV) = -2.75 x 10(-8) n(1/3), indicates a significant band gap shrinkage at high doping levels. These relations are considered to provide a useful tool to determine the electron concentration in Si-doped GaAs by low temperature PL measurement. The electron concentration decreases with increasing TMGa and AsH3 mole fractions and the main peak shifts to the lower energy side. The peak shifts towards the lower energy side with increasing TMGa variation can also be explained by vacancy control model. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the behaviour of compacted expansive soils under swell-shrink cycles. Laboratory cyclic swell-shrink tests were conducted on compacted specimens of two expansive soils at surcharge pressures of 6.25, 50.00, and 100.00 kPa. The void ratio and water content of the specimens at several intermediate stages during swelling until the end of swelling and during shrinkage until the end of shrinkage were determined to trace the water content versus void ratio paths with an increasing number of swell-shrink cycles. The test results showed that the swell-shrink path was reversible once the soil reached an equilibrium stage where the vertical deformations during swelling and shrinkage were the same. This usually occurred after about four swell-shrink cycles. The swelling and shrinkage path of each specimen subjected to full swelling - full shrinkage cycles showed an S-shaped curve (two curvilinear portions and a linear portion). However, the swelling and shrinkage path occurred as a part of the S-shaped curve, when the specimen was subjected to full swelling - partial shrinkage cycles. More than 80% of the total volumetric change and more than 50% of the total vertical deformation occurred in the central linear portion of the S-shaped curve. The volumetric change was essentially parallel to the saturation line within a degree of saturation range of 50-80% for the equilibrium cycle. The primary value of the swell-shrink path is to provide information regarding the void ratio change that would occur for a given change in water content for any possible swell-shrink pattern. It is suggested that these swell-shrink paths can be established with a limited number of tests in the laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effect of aging on swelling and swell-shrink behavior of a compacted expansive soil is investigated in this paper. An expansive soil having a liquid limit of 100% is used for this purpose. Compacted specimens were prepared and aged for a predetermined number of days (7, 15, 30, and 90 days) to study their swelling and swell-shrink behavior. It has been shown that aging improves the resistance to compression of compacted specimens. The swelling potentials of specimens also decreased with aging. The dominant factors that influence the aging effects are the water content and degree of saturation at the beginning of the aging process. The changed behavior of aged specimens is attributed to particle rearrangements and formation of bonds, which affect the surface area absorbing water during swelling. The cyclic swell-shrink tests on aged specimens indicated that the differences in vertical displacement during the first swelling were eliminated in the subsequent cycles when specimens were shrunk more, but the aging effect was found to persist with cycles for specimens subjected to lower shrinkage magnitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimation of creep and shrinkage are critical in order to compute loss of prestress with time in order to compute leak tightness and assess safety margins available in containment structures of nuclear power plants. Short-term creep and shrinkage experiments have been conducted using in-house test facilities developed specifically for the present research program on 35 and 45 MPa normal concrete and 25 MPa heavy density concrete. The extensive experimental program for creep, has cylinders subject to sustained levels of load typically for several days duration (till negligible strain increase with time is observed in the creep specimen), to provide the total creep strain versus time curves for the two normal density concrete grades and one heavy density concrete grade at different load levels, different ages at loading, and at different relative humidity’s. Shrinkage studies on prism specimen for concrete of the same mix grades are also being studied. In the first instance, creep and shrinkage prediction models reported in the literature has been used to predict the creep and shrinkage levels in subsequent experimental data with acceptable accuracy. While macro-scale short experiments and analytical model development to estimate time dependent deformation under sustained loads over long term, accounting for the composite rheology through the influence of parameters such as the characteristic strength, age of concrete at loading, relative humidity, temperature, mix proportion (cement: fine aggregate: coarse aggregate: water) and volume to surface ratio and the associated uncertainties in these variables form one part of the study, it is widely believed that strength, early age rheology, creep and shrinkage are affected by the material properties at the nano-scale that are not well established. In order to understand and improve cement and concrete properties, investigation of the nanostructure of the composite and how it relates to the local mechanical properties is being undertaken. While results of creep and shrinkage obtained at macro-scale and their predictions through rheological modeling are satisfactory, the nano and micro indenting experimental and analytical studies are presently underway. Computational mechanics based models for creep and shrinkage in concrete must necessarily account for numerous parameters that impact their short and long term response. A Kelvin type model with several elements representing the influence of various factors that impact the behaviour is under development. The immediate short term deformation (elastic response), effects of relative humidity and temperature, volume to surface ratio, water cement ratio and aggregate cement ratio, load levels and age of concrete at loading are parameters accounted for in this model. Inputs to this model, such as the pore structure and mechanical properties at micro/nano scale have been taken from scanning electron microscopy and micro/nano-indenting of the sample specimen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomistic molecular dynamics simulations have been carried out to reveal the characteristic features of ethylenediamine (EDA) cored protonated (corresponding to neutral pH) poly amido amine (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) that are functionalized with single strand DNAs (ssDNAs). The four ssDNA strands that are attached via an alkythiolate [-S(CH(2))(6)-] linker molecule to the free amine groups on the surface of the PAMAM dendrimers are observed to undergo a rapid conformational change during the 25 ns long simulation period. From the RMSD values of ssDNAs, we find relative stability in the case of purine rich (having more adenine and guanine) ssDNA strands than pyrimidine rich (thymine and cytosine) ssDNA strands. The degree of wrapping of ssDNA strands on the dendrimer molecule was found to be influenced by the charge ratio of DNA and the dendrimer. As the G4 dendrimer contains relatively more positive charge than G3 dendrimer, we observe extensive wrapping of ssDNAs on the G4 dendrimer than G3 dendrimer. This might indicate that DNA functionalized G3 dendrimer is more suitable to construct higher order nanostructures. The linker molecule was also found to undergo drastic conformational change during the simulation. During nanosecond long simulation some portion of the linker molecule was found to be lying nearly flat on the surface of the dendrimer molecule. The ssDNA strands along with the linkers are seen to penetrate the surface of the dendrimer molecule and approach closer to the center of the dendrimer indicating the soft sphere nature of the dendrimer molecule. The effective radius of DNA-functionalized dendrimer nanoparticles was found to be independent of base composition of ssDNAs and was observed to be around 19.5 angstrom and 22.4 angstrom when we used G3 and G4 PAMAM dendrimers as the core of the nanoparticle respectively. The observed effective radius of DNA-functionalized dendrimer molecules apparently indicates the significant shrinkage in the structure that has taken place in dendrimer, linker and DNA strands. As a whole our results describe the characteristic features of DNA-functionalized dendrimer nanoparticles and can be used as strong inputs to design effectively the DNA-dendrimer nanoparticle self-assembly for their active biological applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compacted clay liners are widely used for waste contaminant facilities because of their low cost, large leachate attenuation capacity and resistance to damage and puncture. Commonly used bentonite possess many limitations such as high swelling and shrinkage potential, sensitivity to waste fluid characteristics etc. The paper proposes the use of bentonite-sand mixture containing optimal clay content as liner material. It has been brought out, based on detailed geotechnical investigations, that a mixture containing only about 20 to 39% of bentonite is more suited than the clay alone and they possess.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydraulic conductivity of fine-grained soils has assumed greater importance in waste disposal facilities. It is necessary to understand better the factors controlling hydraulic conductivity of fine-grained soils which are used as liners in waste disposal facilities. Hydraulic Conductivity study with ten soils with two fluids having extreme dielectric constants(epsilon) namely water and CCl4 has shown that intrinsic permeability (K) increases drastically with decrease in epsilon. These changes are attributed to the significant reduction in the thickness of diffuse double layer which in turn mainly dependent on the epsilon of the permeant. Hydraulic Conductivity with water of each pair of soils having nearly same liquid limit but different plasticity properties is found to be vastly different, but found to correlate well with shrinkage index, defined as difference between the liquid and the shrinkage limits. Also the ratio Kccl(4)/K-w is found to significantly increase with the increase in the shrinkage index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Himalayan glaciers are a focus of public and scientific debate. Prevailing uncertainties are of major concern because some projections of their future have serious implications for water resources. Most Himalayan glaciers are losing mass at rates similar to glaciers elsewhere, except for emerging indications of stability or mass gain in the Karakoram. A poor understanding of the processes affecting them, combined with the diversity of climatic conditions and the extremes of topographical relief within the region, makes projections speculative. Nevertheless, it is unlikely that dramatic changes in total runoff will occur soon, although continuing shrinkage outside the Karakoram will increase the seasonality of runoff, affect irrigation and hydropower, and alter hazards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase equilibria in the Cu-rich corner of the ternary system Cu-Al-Sn have been re-investigated. Final equilibrium microstructures of 20 ternary alloy compositions near Cu3Al were used to refine the ternary phase diagram. The microstructures were characterized using optical microscopy (OM), x-ray diffraction (XRD), electron probe microanalysis and transmission electron microscopy. Isothermal sections at 853, 845, 833, 818, 808, 803 and 773 K have been composed. Vertical sections have been drawn at 2 and 3 at% Sn, showing beta(1) as a stable phase. Three-phase fields (alpha + beta + beta(1)) and (beta + beta(1) + gamma(1)) result from beta -> alpha + beta(1) eutectoid and beta + gamma(1) -> beta(1) peritectoid reactions forming metastable beta(1) in the binary Cu-Al. With the lowering of temperature from 853 to 818 K, these three-phase fields are shifted to lower Sn concentrations, with simultaneous shrinkage and shifting of (beta + beta(1)) two-phase field. The three-phase field (alpha + beta + gamma(1)) resulting from the binary reaction beta -> alpha + gamma(1) shifts to higher Sn contents, with associated shrinkage of the beta field, with decreasing temperature. With further reduction of temperature, a new ternary invariant reaction beta + beta(1) -> alpha + gamma(1) is observed at similar to 813 K. The beta disappears completely at 803 K, giving rise to the three-phase field (alpha + beta(1) + gamma(1)). Some general guidelines on the role of ternary additions (M) on the stability of the ordered beta(1) phase are obtained by comparing the results of this study with data in the literature on other systems in the systems group Cu-Al-M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the first observations of transition from a pre-vortex breakdown (Pre-VB) flowreversal to a fully developed central toroidal recirculation zone in a non-reacting, double-concentric swirling jet configuration and its response to longitudinal acoustic excitation. This transition proceeds with the formation of two intermediate, critical flow regimes. First, a partially penetrated vortex breakdown bubble (VBB) is formed that indicates the first occurrence of an enclosed structure as the centre jet penetration is suppressed by the growing outer roll-up eddy; resulting in an opposed flow stagnation region. Second, a metastable transition structure is formed that marks the collapse of inner mixing vortices. In this study, the time-averaged topological changes in the coherent recirculation structures are discussed based on the non-dimensional modified Rossby number (Ro(m)) which appears to describe the spreading of the zone of swirl influence in different flow regimes. Further, the time-mean global acoustic response of pre-VB and VBB is measured as a function of pulsing frequency using the relative aerodynamic blockage factor (i.e., maximum radial width of the inner recirculation zone). It is observed that all flow modes except VBB are structurally unstable as they exhibit severe transverse radial shrinkage (similar to 20%) at the burner Helmholtz resonant modes (100-110 Hz). In contrast, all flow regimes show positional instability as seen by the large-scale, asymmetric spatial shifting of the vortex core centres. Finally, the mixing transfer function M (f) and magnitude squared coherence lambda(2)(f) analysis is presented to determine the natural couplingmodes of the system dynamic parameters (u', p'), i.e., local acoustic response. It is seen that the pre-VB flow mode exhibits a narrow-band, low pass filter behavior with a linear response window of 100-105 Hz. However, in the VBB structure, presence of critical regions such as the opposed flow stagnation region alters the linearity range with the structure showing a response even at higher pulsing frequencies (100-300 Hz). (C) 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Densification mechanisms involved during reactive hot pressing (RHP) of zirconium carbide (ZrC) have been studied. RHP has been carried out using zirconium (Zr) and graphite (C) powders in the molar ratios 1:0.5, 1:0.67, 1:0.8, and 1:1 at 40MPa, 800 degrees C-1200 degrees C for different durations. The volume fractions of phases formed, including porosity, are determined from the measured density and from Rietveld analysis. Increased densification with an increasing nonstoichiometry in carbon has been observed. Microstructural and X-ray diffraction observations coupled with the predictions of a model based on the constitutive laws governing plastic flow of zirconium suggest that the better densification of nonstoichiometric compositions arise from the higher amount of starting Zr and also the longer duration of its availability for plastic flow during RHP. Volume shrinkage due to reaction between Zr and C and the gradual elimination of the soft metal phase limit the final density achievable. Based on these observations, a two-step RHP carried out at 800 degrees C and 1200 degrees C leads to a better densification than a single RHP at 1200 degrees C.